The Maven Practical Guide

Karl Heinz Marbaise

Version 0.1.0-SNAPSHOT, 2023-12-26

Table of Contents

Colophon
Preface
Project Metadata
THIS IS WORK IN PROGRESS
Overview
1. The Basics
1.1. The Foundation
1.2. The build life cycle
1.2.1. Directory Structure
1.3. The Coordinates
1.4. Coordinates
1.5. Versions
1.5.1. SNAPSHOT
1.5.2. Releases
2. Single Module Projects
2.1. Directory Structure
2.1.1. Different dependent projects
3. Testing with Maven
3.1. Project Setup
3.1.1. Unit Testing
3.1.2. Integration Testing
3.1.3. Testing Suites
3.1.4. Testing Frameworks
JUnit 4
Test NG
JUnit Jupiter
Combining
3.1.5. Unit Testing
3.1.6. Integration Testing
Importance of Separation
3.1.7. Combining Unit- and Integration Testing
End To End Testing
4. Parent
4.1. Overview
5. Multi Module Builds
5.1. Basic Structure
5.1.1. Directory Structure
5.1.2. The Multi-Module-Parent

© 00 00 00 00 0 00 0 00 0 0 N N9 N oo oo oo L 1 U1 U1 U1 i W W W w N

S e S T Y
o U1 U1 U1 R R W W NN

5.2. Releasing a Multi module Project

5.2.1. Examples
XXX
5.3. Spring Boot

6. Code Coverage

6.1. JaCoCo
6.1.1. single Module Setup
6.1.2. Multi Module Setup
6.2. Mutation Testing

7. Maven Assemblies

7.1. Overview

7.1.1. The Maven Assembly Plugin

Single Executable Artifact
Creating an ZIP Archive
Default Assemblies
Predefined Descriptors
Module Sets

Dependency Sets

Sources

Predefined Descriptors

8. Plugins

8.1. The Plugin Sources
8.1.1. The Different Plugins
Clean Everything
Resources
Let The Source Be With You

Let’s See If The Code Is Working?

Let The Jar’s Come To Me
Install The Archive
Distribute It To The World
Let The Force Be With You

8.1.2. Maven compiler

9. Making Releases

9.1. Single Module Build
9.2. Multi Module Build
9.2.1. In One
9.2.2. Single Childs
9.3. Maven Release Plugin
9.4. The Traditional Maven Way
9.5. Releases The CD Way

10. Continuous Integration Solution

18
18
18
18
19
19
19
19
19
20
20
20
20
21
22
22
22
22
22
22
24
24
24
24
25
25
26
26
26
26
27
29
30
30
30
30
30
30
30
30
32

10.1. More Details
11. Build Smells
11.1. Creating Multiple Artifacts
11.2. Not Part of the Life Cycle
11.3. Multi Module Builds
11.3.1. Module Structure
11.3.2. The Install Hack
11.3.3. Separation of Concerns
11.4. Testing
11.5. Assemblies
11.6. Problem with Profiles and Dependencies
11.7. What about dependencies by profiles?
12. Plugin Development
12.1. Reasons
12.2. Basics
12.2.1. Building a plugin
12.3. Testing
12.3.1. Compatibility
13. Plugin Configuration
13.1. General Configuration
13.2. The build life cycle
14. Performance tipps
14.1. Incremental Builds
15. Repository Manager
15.1. Reasons
16. Best Practices
16.1. Plugin Management
16.2. Generate Into Source Folder
16.3. Dependencies / DependencyManagement
16.4. Deps via Props
16.5. Company wide parent(s)
16.6. Building for different Environments
16.7. How to do good integration tests for maven plugins
16.8. Nexus
16.9. Branching Strategies
17. Exceptions from Best Practices
17.1. Layout
18. Site
18.1. Maven Site Plugin
19. Profiles
19.1. Basics

32
33
33
33
33
33
33
33
33
34
34
34
35
35
35
35
35
36
37
37
37
38
38
39
39
40
40
40
40
40
41
41
42
42
42
43
43
44
44
45
45

19.1.1. Environment Dependent
19.2. Bad Practices
20. Different Environments
20.1. The Solutions
20.2. The Obvious Solution
20.3. The next
21. Maven 4
21.1. Consumer vs. Build POM
21.2. Improved Reactor Behaviour
21.3. Caching
21.4. Plugins
Appendix A: Example Appendix
A.1. Appendix Sub-section
A.2. Example Glossary
22. Example Bibliography
Glossary

Index

45
45
46
46
46
47
48
48
48
48
48
49
49
49
50
50
50

About Karl Heinz Marbaise

FIXME: Add more about me. something more about me ;-)

I'm ... the XXX.

This is the Abstract of this document.

Colophon
© 2014-2023 by Karl Heinz Marbaise

Copies of this document may be made for your own use and for distribution to
others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print

or electronically.

NOTE

Preface

Project Metadata

 Version control https://github.com/khmarbaise/the-maven-practical-guide

* Bug tracker: https://github.com/khmarbaise/the-maven-practical-guide/issues

This book has been created by using the following tools: Git, AsciiDoc and IDEA Intelli] for text
editing.

THIS IS WORK IN PROGRESS

This guide is an attempt to write a practical guide about Apache Maven. Its idea is to give practical
hints how to use Apache Maven and describe and show what are the best practices and why you
should follow them.

If you have any suggestions, improvements or found issues please report them via the bug tracker,
mentioned in metadata area.

This is also in its early stage so a large number of areas are just a containing a couple of sentences
or even less. Those simply reminders to my own.

Overview

This is a more or less full documentation about Apache Maven.

https://github.com/khmarbaise/the-maven-practical-guide
https://github.com/khmarbaise/the-maven-practical-guide/issues
https://git-scm.com
https://asciidoc.org/
https://www.jetbrains.com/idea/

Chapter 1. The Basics

Requirement: Install Maven ? Download it from?

Download Maven https://maven.apache.org/download.cgi and install https://maven.apache.org/
install.html.

Overview about the basics, components of a pom.xml file. What is a life cycle..

Checking that the installation has worked

mvn --version

This should print out something similar like the following on a MacOS:

$ mvn --version

Apache Maven 3.9.3 (21122926829f1ead511¢958d89bd2f672198ae9f)

Maven home: /Users/khm/tools/maven

Java version: 17.0.7, vendor: Eclipse Adoptium, runtime: xxxxx

Default locale: en_DE, platform encoding: UTF-8

0S name: "mac os x", version: "13.4.1", arch: "aarch64", family: "mac"

On a linux like system it would print something like this:

TODO: Real output of a debian system:

$ mvn --version

Apache Maven 3.9.3 (21122926829f1ead511¢958d89bd2f6721983e9f)

Maven home: /Users/khm/tools/maven

Java version: 17.0.7, vendor: Eclipse Adoptium, runtime: xxxxx

Default locale: en_DE, platform encoding: UTF-8

0S name: "mac os x", version: "13.4.1", arch: "aarch64", family: "mac"

On a Windows system it should look similar like this:

TODO: Real output of Windows:

c:\> mvn --version

Apache Maven 3.9.3 (21122926829f1ead511c958d89bd2f672198ae9f)

Maven home: /Users/khm/tools/maven

Java version: 17.0.7, vendor: Eclipse Adoptium, runtime: Xxxxxx

Default locale: en_DE, platform encoding: UTF-8

0S name: "mac os x", version: "13.4.1", arch: "aarch64", family: "mac"

https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://maven.apache.org/install.html

1.1. The Foundation

Let us start with a minimal pom file. It’s required that you put the content into a file called pom.xml in
a separate directory on your system:

[plus circle] denotes a public type, [minus circle]

<modelVersion>4.0.0</modelVersion>

<!-- NEED TO REMOVE THE PARENT -->

<parent>
<groupId>com.soebes.tmpg.examples.basics</groupld>
<artifactId>basics-aggregator</artifactId>
<version>0.1.0-SNAPSHOT</version>

</parent>

<groupId>com.soebes.tmpg.examples.basics</groupld>
<artifactId>simplest-pom</artifactId>
<version>0.1.0-SNAPSHOT</version>

@O

<name>TMPG :: Examples :: Simplest POM</name>
</project>

@ The groupld
@ The artifactld

® The version

1.2. The build life cycle

The life cycle phases...

1.2.1. Directory Structure

Describe the basic directory structure.

1.3. The Coordinates

groupld, artifactld, version.

1.4. Coordinates

Structure in java project separated/structured by using packages Higher level abstraction
separation via groupld coordinates

groupld/artifactld/version

repositories? picturing to repositories? Remote repositories? How to find an artifact based on it
coordinates? What about search https://central.sonatype.com

1.5. Versions

Base idea of versions? Why even needed?

* Semantic Versioning

* Calendar Versioning

1.5.1. SNAPSHOT

Version, SNAPSHOT vs. NON-SNAPSHOT

1.5.2. Releases

What is a release from Maven point of view? Immutability? Why?

https://central.sonatype.com
https://semver.org/
https://calver.org/

Chapter 2. Single Module Projects

An often used setup of a Maven project has a single pom.xml file which contains the definition for
dependencies and plugins etc. The project has a single artifact as a result which is often a jar file,
but of course you can create war, ear or alike. That will be defined by the given
<packaging>jar</packaging> tag.

2.1. Directory Structure

The following directory structure shows the default directory layout of a Maven project. That a
convention to go that way. I strongly recommend to keep that structure (more details ??).

TODO:

* Based pom.xml without any supplemental configuration (in particular plugins)
> Consequences of that?

* The need for pluginManagement (pinning plugin versions?)
o Why is that needed?

¢ More reasons?

+--- pom.xml

oo S
+--- main
+--- java
+--- resources
+--- test
+--- java

+--- resources

2.1.1. Different dependent projects

Having several projects? Identifying duplication for example plugin configuration,
pluginManagement etc. TODO: Add chapter about parents...

This should be moved to a location after testing setup and single module build.

_exceptions.adoc

Chapter 3. Testing with Maven

create a general summary (overview). The goal which should be reached in this section.

3.1. Project Setup
Explain the basic project setup..

Using fraction example.

3.1.1. Unit Testing
Basic unit testing, naming conventions, skip execution of unit tests

Using JUnit Jupiter as example because it states of the art.

3.1.2. Integration Testing

Basic combination of unit- and integration testing, naming conventions, skip execution of
integration tests or both.

3.1.3. Testing Suites

With JUnit Jupiter

3.1.4. Testing Frameworks

JUnit 4

Test NG

JUnit Jupiter

Combining

Combination of all of them within a single build.

This part will give some practical hints how you can use unit- and integration tests in relationship
with Maven. Furthermore it will give you tipps how to prevent several issues with testing.

Think about some examples about the following: http://stackoverflow.com/questions/23588707/
maven-layout-how-to-be-sure-that-src-main-does-not-depend-on-src-test

http://stackoverflow.com/questions/23659829/maven-run-class-before-test-phase-exec-maven-
plugin-execjava-not-executing-cla

Information: http://labs.carrotsearch.com/randomizedtesting.html http://stackoverflow.com/

http://stackoverflow.com/questions/23588707/maven-layout-how-to-be-sure-that-src-main-does-not-depend-on-src-test
http://stackoverflow.com/questions/23588707/maven-layout-how-to-be-sure-that-src-main-does-not-depend-on-src-test
http://stackoverflow.com/questions/23659829/maven-run-class-before-test-phase-exec-maven-plugin-execjava-not-executing-cla
http://stackoverflow.com/questions/23659829/maven-run-class-before-test-phase-exec-maven-plugin-execjava-not-executing-cla
http://labs.carrotsearch.com/randomizedtesting.html
http://stackoverflow.com/questions/8295100/how-to-re-run-failed-junit-tests-immediately

questions/8295100/how-to-re-run-failed-junit-tests-immediately

https://blog.42.nl/articles/keeping-integration-tests-isolated/

3.1.5. Unit Testing

Unit testing can be done out-of-box in Maven which means you just have to locate your unit tests
into 'src/test/java’ and follow the naming conventions. The resulting and recommended folder
structure will be show in the following example.

|-- pom.xml

‘-- src
|-- main
| '-- java
| ‘-~ com
| ‘-~ soebes
| ‘-- training
| ‘-~ maven
| ‘-- simple
| ‘-~ BitMask.java
‘-- test
‘-- java
‘-~ com
‘-- soebes
‘-~ training
‘'-- maven

‘-- simple
‘-- BitMaskTest.java

The folder src/main/java plus an appropriate package structure will contain your production code
whereas the src/test/java plus the package structure will contain your unit test area.

https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.html#includes

Table 1. Naming Schema for Unit Tests

Name Pattern Example

Test*java TestBitMask.java
*Test.java BitMaskTest.java
*Tests.java BitMaskTests.java
*TestCase.java BitMaskTestCase.java

The following simple example will show how a basic unit test can look like.

This is an Example

package com.soebes.training.maven.simple;

http://stackoverflow.com/questions/8295100/how-to-re-run-failed-junit-tests-immediately
https://blog.42.nl/articles/keeping-integration-tests-isolated/
https://maven.apache.org/surefire/maven-surefire-plugin/test-mojo.html#includes

import static junit.framework.Assert.assertEquals;
import org.junit.Test;
public class BitMaskTest {

@Test

public void checkFirstBitTest() {
BitMask bm = new BitMask(0x8000000000000000L);
assertEquals(true, bm.isBitSet(63));

}

@Test
public void checkNumberBitTest() {
for (int bitNumber = @; bitNumber < 64; bitNumber++) {
long bitMask = Long.rotatelLeft(1, bitNumber);
BitMask bm = new BitMask(bitMask);
assertEquals(true, bm.isBitSet(bitNumber));

}

@Test
public void setBitNumberTest() {
BitMask bm = new BitMask();
for (int bitNumber = @; bitNumber < 64; bitNumber++) {
bm.setBit(bitNumber);
assertEquals(true, bm.isBitSet(bitNumber));

}

@Test
public void unsetBitNumberTest() {
BitMask bm = new BitMask();
for (int bitNumber = @; bitNumber < 64; bitNumber++) {
bm.setBit(bitNumber);
}
for (int bitNumber = @; bitNumber < 64; bitNumber++) {
bm.unsetBit(bitNumber);
assertEquals(false, bm.isBitSet(bitNumber));

}

@Test
public void adhocBitTest() {
BitMask bm = new BitMask(OxffffffffffffffffL);
bm.unsetBit(10);
bm.unsetBit(20);
bm.unsetBit(30);
bm.unsetBit(40);
bm.unsetBit(50);

bm.unsetBit(60);

assertEquals(false, bm.isBitSet(10));
assertEquals(false, bm.isBitSet(20));
assertEquals(false, bm.isBitSet(30));
assertEquals(false, bm.isBitSet(40));
assertEquals(false, bm.isBitSet(50));
assertEquals(false, bm.isBitSet(60));

So if you follow the conventions in Maven and put your tests into the appropriate location
src/test/java those tests will automatically be picked up and executed as unit tests. The plugin
which is responsible for execution of those unit tests is the Maven Surefire Plugin.

Make an example output here....

An important thing to think of is sometimes which test framework you would like to use? There are
things like JUnit, TestNG, Spock and of course many other opportunities.

In the case you would like to use https://junit.org within your unit tests you just simply add the
appropriate dependency to your 'pom.xml' and that’s it.

Unit Testing Example(1)

<parent>
<groupId>com.soebes.tmpg.examples.testing</groupld>
<artifactId>tmpg-examples-aggregator</artifactId>
<version>0.1.0-SNAPSHOT</version>

</parent>

<groupId>com.soebes.tmpg.examples.testing.ut-example</groupIld>
<artifactId>unit-test-example</artifactId>
<version>0.1.0-SNAPSHOT</version>

<name>TMPG :: Testing :: Unit Test Example</name>

<dependencies>
<dependency>
<groupId>junit</groupIld>
<artifactId>junit</artifactId>
<version>4.13.2</version>
<scope>test</scope>
</dependency>
</dependencies>

If you prefer https://testng.org to use for your unit tests you can simply add the dependency for
https://testng.org and your unit tests can be run as well without any supplemental change except
the changes based on the differences between https://junit.org and TestNG itself.

11

https://maven.apache.org/plugins/maven-surefire-plugin/
https://junit.org
https://testng.org
https://junit.org
https://testng.org
https://testng.org
https://junit.org
https://testng.org

Unit Testing Example(2)

<project
xmlns="http://maven.apache.orqg/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.orqg/POM/4.0.0 http://maven.apache.org/maven-
vd_0_0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.soebes.tmpg.examples.testing</groupId>
<artifactId>tmpg-examples-aggregator</artifactId>
<version>0.1.0-SNAPSHOT</version>

</parent>

<groupId>com.soebes.tpmg.examples.testing.ut-example</groupld>
<artifactId>unit-test-example-testng</artifactld>
<version>0.1.0-SNAPSHOT</version>

<name>TMPG :: Testing :: Unit Test Example (TestNG)</name>

<dependencies>
<dependency>
<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>7.8.0</version>
<scope>test</scope>
</dependency>
</dependencies>

</project>

Location of unit tests
'src/test/java’ is the correct location for unit tests.

Packaging of unit tests execution of unit tests Support of testing frameworks JUnit, TestNG, Spock?,
BDD ?

3.1.6. Integration Testing

What is integration tests? How to use? Naming convention? In which cases should be used a
separate module?

Test an web application with Selenium? (Examples).

Importance of Separation

Why is it important to separate between unit tests and integration tests?

12

If look into the formal definition of unit tests you will read things like independent of any resource
etc. So you can by definition parallelize unit tests in general. If you don’t have real unit tests you
can’t go that simple path to improve your build time.

In contradiction integration tests are not independent and could not be parallelized by default.
Under special circumstances you might change cause you know your code and of course your tests.
This means to parallelize integration tests is always a task which should be done separately.

http://tempusfugitlibrary.org/documentation/ http://labs.carrotsearch.com/randomizedtesting.html

http://zeroturnaround.com/rebellabs/the-correct-way-to-use-integration-tests-in-your-build-process/

3.1.7. Combining Unit- and Integration Testing
?? Controlling what should be executed and what not?

??

End To End Testing

How? Using a profile? Better solutions?

13

http://tempusfugitlibrary.org/documentation/
http://labs.carrotsearch.com/randomizedtesting.html
http://zeroturnaround.com/rebellabs/the-correct-way-to-use-integration-tests-in-your-build-process/

Chapter 4. Parent

the intention of a parent in general, super-pom, corporate parent? What should be part of a parent?
What should NOT being part of a parent?

4.1. Overview
What is the target of a parent?
Which kind of parents do exist?

Corporate parent, multi-module-parent? Is there a difference?

14

Chapter 5. Multi Module Builds

Sometimes it is sufficient having a single pom file and a limited number of Java classes which are
combined into a single jar file.

This is a solution in a number of cases but not for all kind of project types. In times of microservices
projects becoming smaller even though it happens that you would like to separate out parts. For
example having a generation of OpenAPI based code, or things like your jpa repositories (from a
Spring Boot app) etc.

If you think about creating a command line app including a web application where you share code.
That means you would have a command line part (module), a web application part(module) and
common code (module). This results in a nice multi-module-build.

In the JEE area where several parts of an enterprise applications make sense to separate the
creation of those kind of archive like Enterprise Application Archive(ear), the web application
archive(war) etc.

Nevertheless, a project can become larger, when you realize it would make it easier to separate
several parts out into a higher level of groupings.

In such cases it makes sense to create a multi-module-build. So start with a look on the basic
structure of a multi-module-build.

5.1. Basic Structure

Lets us take the example from the Overview chapter about the command line app. We could name
those modules like this:

* module-cli

* module-web

* module-common

5.1.1. Directory Structure

Based on this assumption a directory structure could look like this. We assume further that the root
directory is the name of the git repository which will be created:

root

+-- module-cli
+-- module-common
+-- module-web

Now let us dive into the details about such a project structure. What needs to be done to create such
structure (apart from creating the directories). How could we build such a project and what kind of
consequence are following from it.

15

https://www.openapis.org/
https://en.wikipedia.org/wiki/EAR_(file_format)
https://en.wikipedia.org/wiki/WAR_(file_format)
https://en.wikipedia.org/wiki/WAR_(file_format)
#_multi_module_builds

Based on the idea of the relationship of the modules it is useful to create an appropriate directory
structure.

+--- pom.xml
+--- module-cli
+--- module-web
+--- module-common

5.1.2. The Multi-Module-Parent

There are some parts which you need to pay attention to, to get a good working experience. The
first thing is the pom.xml file on the root level of this structure. This is usually called the "parent" or
multi-module-parent. This looks very similar like this:

pom.xml

<project
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.soebes.mpg.examples.mmb</groupld>
<artifactId>parent</artifactId>
<version>1.0.0-SNAPSHOT</version>
<packaging>pom</packaging>

<modules>
<module>module-cli</module>
<module>module-common</module>
<module>module-web</module>
</modules>

</project>

This pom.xml file contains the usual parts like groupld, artifactld, version but at least one very
important difference to other project which is the <packaging>pom</packaging>. And of course the
module defined by the usage of the <modules>..</modules> tag including the list of module which are
defined by <module>---</module>. The names like module-cli etc. correspond to the directories on the
file system.

+--- pom.xml
+--- module-cli
+--- module-web

16

+--- module-common

In a usual Maven project you have a single pom.xml file, and then you start with the src/ directory
where your code lives. The directory is often enriched with other files like a README .md (or alike) etc.

The README .md(or alike) of course are often being found in multi-module-build as well.

This pom file contains no code nor does it produce an artifact as the usual maven project. This
means in other words it does not produce an jar-File. This is the reason why this Maven project
defines it’s packaging as pom.

But on the level of the parent pom.xml you will not find any src directory.

Apart from the above you need to define the list of modules which you would like include in this
parent. It is best practice to name the folders as their appropriate artifactId. So now let us take a
look at a module how its pom file looks like:

pom.xml

<project
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.soebes.mpg.examples.mmb</groupIld>
<artifactId>parent</artifactId>
<version>1.0.0-SNAPSHOT</version>

</parent>

<artifactId>module-core</artifactId>
</project>
See here
What is the basic idea of a multi module build? Same version? Same time of releasing them.

Reasons to create a multi module setup:

* Multiple Modules

o myva-nstal-Erstwhyd)

¢ Unit Tests (mvn test)

* Integration Test (mvn integration-test)

* packaging

17

http://stackoverflow.com/questions/11528877/releasing-a-multi-module-maven-project-hosted-in-single-git-repository/

* use of an module from a reactor build in other projects?
* Release all modules/projects at one point in time

* All the modules are related to each other ?
Pro’s and Cons' http://stackoverflow.com/questions/23584429/releasing-a-modular-maven-project

Jenkins support for separated maven projects to be released: https://wiki.jenkins-ci.org/display/
JENKINS/Maven+Cascade+Release+Plugin

Aggregator ? Difference.
http://stackoverflow.com/questions/23936339/maven-parent-project-structure

What if only a single modules code has been changed? Can i release only a single module from the
multi module build? Draw backs?

5.2. Releasing a Multi module Project

From root, single module? ?

5.2.1. Examples

XXX

5.3. Spring Boot
A multi module project based on Spring Boot.
spring boot project setup.
root
+--- pom.xml
+--- jpa

+--- controllers
+--- application

18

http://stackoverflow.com/questions/23584429/releasing-a-modular-maven-project
https://wiki.jenkins-ci.org/display/JENKINS/Maven+Cascade+Release+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Maven+Cascade+Release+Plugin
http://stackoverflow.com/questions/23936339/maven-parent-project-structure

Chapter 6. Code Coverage

What is code coverage...

6.1. JaCoCo

see article about jacoco..

6.1.1. single Module Setup
6.1.2. Multi Module Setup

6.2. Mutation Testing

Using pitest.

19

Chapter 7. Maven Assemblies

7.1. Overview

During the usage you will often be faced with the situation to create a kind of distribution archive
for example 'dist.zip' or 'dist.tar.gz' or other kind of archive flavors. Things which also happen are
to create a so called 'ueber' jar which you can use to call your java application from the command
line (There are other opportunities as well see Chapter...). Furthermore, you often have the
requirement to create archives with different configurations for different environments this also
achievable.

This chapter will give a wide overview of the possibilities how you can create the different flavors
of archives which you need to fulfill the requirements of your builds furthermore we will take a
look what kind of mistakes you can make and how to prevent them.

7.1.1. The Maven Assembly Plugin

The Maven Assembly Plugin is especially created for such purposes to create any kind of archive
type.

Single Executable Artifact

One of the requirements you will often be confronted with is to create an archive which can simply
be executed on command line. This is often called an uveber-jar or fat-jar (or Maven tongue: jar-
with-dependencies). This can simply be accomplished by using Maven Assembly Plugin's pre-
defined descriptors.

The following pom.xml example will give you an impression how the configuration for Maven
Assembly Plugin needs to look like to get a jar-with-dependencies.

<project
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-
v4 0 0.xsd">

<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.soebes.tmpg.examples.assemblies</groupld>
<artifactId>tmpg-assemblies-aggregator</artifactId>
<version>0.1.0-SNAPSHOT</version>

</parent>

<artifactId>assembly-jar-with-dependencies</artifactId>
<name>TMPG :: Assemblies :: JAR With Dependencies</name>
<dependencies>

<dependency>

20

https://maven.apache.org/plugins/maven-assembly-plugin/
https://maven.apache.org/plugins/maven-assembly-plugin/
https://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html
https://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html
https://maven.apache.org/plugins/maven-assembly-plugin/
https://maven.apache.org/plugins/maven-assembly-plugin/

<groupId>org.testng</groupId>
<artifactId>testng</artifactId>
<version>6.8.8</version>
</dependency>
</dependencies>

<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<executions>
<execution>

<id>make-jar-with-dependencies</id>
<phase>package</phase>

<goals>
<goal>single</goal>
</goals>
<confiquration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

By using the above pom you will get a jar which contains all the dependencies you have defined in
your pom file as part of the resulting jar which is named by using a classifier jar-with-dependencies
to make it distinguishable from the other artifacts. The other aspect of this example project is that
you can see how simple it is to create such an artifact. One thing which should be mentioned the
Maven Assembly Plugin. It is not bound to any Build Life Cycle Phase by default which means you
need to bind it to the life-cycle explicitly if you like to use it.

A note about the given example. In real life you should find this example suspicious, because it will
use a typical test dependency (TestNG) without the scope test which is usually wrong. In this case it
is only use for example purposes.

The created jar-with-dependencies can simply be used by the following:

java -jar target/assembly-jar-with-dependencies-0.17.0-SNAPSHOTS-jar-with-
dependency.jar

Creating an ZIP Archive
The idea of an archive is have particular content which is defined by the project in the way you like

to do that and define how it will look like within the archive. This means having a folder structure

21

https://maven.apache.org/plugins/maven-assembly-plugin/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

within the archive or not.

Default Assemblies

» Default assemblies
* Archive types

* Component Descriptors

Distribution archive

empty folders etc.
Typical scenarios which occur often.

Create a jar with all dependencies which might be used to call simply java program as a command
line tool. Alternatives Maven Shade Plugin.

You would like to create an distribution archive which contains the resulting components of your
application. Examples.

You would like to create an archive with all sources of your project as well as the sources of all the
used dependencies:

mvn dependency:sources
mvn dependency:copy-dependencies -Dclassifier=sources -DoutputDirectory=target/sources

Add here all the examples from my example-assemblies

Special requirements which you can fulfil with maven-assembly-plugin https://stackoverflow.com/
questions/24311053/how-to-get-the-content-of-a-directory-inside-of-war-that-is-inside-of-an-ear-tha

Predefined Descriptors

The predefined descriptors fulfil the need of often requests archive types which should be usable in
a very short time. You could use them in a very simple form.

Module Sets
Dependency Sets
Sources

Predefined Descriptors

Currently there are four of them:

1. bin
2. jar-with-dependencies

3. src

22

https://maven.apache.org/plugins/maven-shade-plugin/
https://stackoverflow.com/questions/24311053/how-to-get-the-content-of-a-directory-inside-of-war-that-is-inside-of-an-ear-tha
https://stackoverflow.com/questions/24311053/how-to-get-the-content-of-a-directory-inside-of-war-that-is-inside-of-an-ear-tha
https://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html#bin
https://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html#jar-with-dependencies
https://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html#src

4. project

23

https://maven.apache.org/plugins/maven-assembly-plugin/descriptor-refs.html#project

Chapter 8. Plugins

The plugins of Maven building the foundation of the Maven ecosystem, cause if you download
Maven itself it’s a relative small archive (less than 8 MiB) and Maven itself is more or less only a IoC
container which supports the life-cycle and other small things. If you like to compile for example
your source code this is provided by the Maven Compiler Plugin with the appropriate functionality.

This chapter will give you an overview of the different areas of plugins sources, the different ideas
of the plugins and their typical usage within a Java project build.

8.1. The Plugin Sources

In general there are two big sources of plugin. The first source is the area under the umbrella of the
Apache Software Foundation. I will call them the Core Maven Plugins. The reason for this is that
you will find plugins like Maven Compiler Plugin, Maven Jar Plugin etc. in that area which provide
the most basic functionality for your build.

The second source is the MojoHaus area which also provides a large number of maven plugins (for
example versions-maven-plugin, build-help-maven-plugin, buildnumber-maven-plugin).

Other sources of Plugins (JBoss, Tomcat, Antlr, google code (Maven Processor Plugin)
jaxws-maven-plugin ? (URL?)
Describe more sources and other plugins

Groovy Plugins

8.1.1. The Different Plugins

In this chapter we will take a look on more or less every plugin which is a participant of a usual
Java build or to be more accurate a participant of the {link-build-life-cycle}.

The lifecycle contains already bindings for usual plugins so in the majority of the cases its enough
to build usual projects.

Clean Everything

If you want to be sure your build will start from scratch you need to wipe out everything which has
been created by previous operations or the build itself. So the Maven Clean Plugin is your friend
which will delete the target folder of your project or in every module in case of a multi-module-
build. This can be simply achieved by calling maven like this:

mvn clean

Usually you won’t ever think about the Maven Clean Plugin, cause by default it’s bound to the
'clean’ Build Life Cycle Phase and there is no reason to change the configuration of the Maven Clean
Plugin or something similar. In rare situations it could happen that you need to change the

24

https://en.wikipedia.org/wiki/Binary_prefix#Specific_units_of_IEC_60027-2_A.2_and_ISO.2FIEC_80000
https://maven.apache.org/plugins/maven-compiler-plugin/
https://www.apache.org/
https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/plugins/maven-jar-plugin/
https://www.mojohaus.org/plugins.html
https://maven.apache.org/plugins/maven-clean-plugin/
https://maven.apache.org/plugins/maven-clean-plugin/
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/plugins/maven-clean-plugin/
https://maven.apache.org/plugins/maven-clean-plugin/

configuration and add supplemental folders or files which should be deleted during a 'mvn clean’
call.

NOTE HINT: Something about the clean life cycle of the maven super pom!!
In the clean life cycle the following phases exist: pre-clean, clean, post-clean.

Resources

Often it occurs that your java code needs some kind of configuration files. One of the most famous
examples for this kind of configurations is one of those numerous logging frameworks like log4j,
logback, log4j2 etc. So the question is where to locate such configuration files? The Default Folder
Layout gives you the hint to put such things into src/main/resources which is of course intended for
the production code (in other words which is packaged later into the jar file). Furthermore, it is
often the case as well as having different configuration files for your unit tests because you would
like having a different logging level in your unit test, so you need a different set of files which
should be located into src/test/resources. This means in other words those files will not be
packaged into the resulting jar file.

TODO: Move the following to test phase
HINT about super pom !

So usually you can simply put your appropriate configuration files into src/test/resources or
src/main/resources and they will automatically be copied into 'target/classes’ or 'target/test-classes'.
But why are they copied ? The most important point about this is that you can use such resources
by the usual java resources way like this:

code example (getClass().getResourcesAsStream("/1log4j.properties”);) This works for unit tests
and for your production code! (good example?)

One important thing to mention is that the order on your class path is that the resources from your
test resources coming first before your production code which means you can give a different
configuration file for every file which you already use in your production code and so you can
change the behaviour in your unit tests to change things for example the logging level or something
else.

* Maven Resources Plugin

Let The Source Be With You

You usually write Java source code. Ok, ok sometimes you write source code in different languages
Groovy, Kotlin, Scala or whatever and of course you would like to compile such code into usable
class files which can be used to run your application or to run your unit tests. We will focus here on
Java source code first.

This is the purpose of the Maven Compiler Plugin which will compile your source code into class
files.

The source code is located in src/main/java and will be compiled into the target/classes folder.

25

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/plugins/maven-resources-plugin/
https://groovy-lang.org/
https://kotlinlang.org/
https://scala.org
https://maven.apache.org/plugins/maven-compiler-plugin/

Apart from that the Maven Compiler Plugin is also responsible to compile your unit/integration test
code which is located in src/test/java into target/test-classes.

Let’s See If The Code Is Working?

After we have compiled the whole code we should run the unit tests to check our code. This is done
before the code will be packaged into a jar file, cause if one of your unit tests will fail your build
will fail and no packages (jar files) are being built.

For this purpose the https://maven.apache.org/plugins/maven-surefire-plugin/ is responsible to run
those unit tests.

Let The Jar’s Come To Me

After the production code has been compiled into the appropriate .class files they will be packed
into a jar file which is the base unit to be distributed. The jar will contain only the files from
target/classes. So if you don’t do something special your unit tests will never be packed into jar
files.

The Maven Jar Plugin is bound to the 'package’ build life cycle phase to create a jar file. This jar file
contains only the files from the src/main/java inclusive the resources from src/main/resources area
(Let use call it the production code area).

There exist situations where you like to package your test code into a jar as well. This can be
achieved by using the test-jar goal of the Maven Jar Plugin.

See examples (testing with common code).
¢ {link-maven-jar-plugina}

Creating test-jars no transitive behaviour of test-jar artifact. Solution create a usual separate
module.

Install The Archive

After the jar archive has been created the archive can be installed into the local repository to be
consumed by other projects on the same machine. For such a purpose the Maven Install Plugin is
responsible.

Distribute It To The World

To break the limits of your machine you can distribute an jar archive to a remote repository which
can be used by other users. For this the Maven Deploy Plugin.

* Maven WAR Plugin

* Maven EAR Plugin

* Maven EJB Plugin

* Maven Shade Plugin

* Maven Deploy Plugin

26

https://maven.apache.org/plugins/maven-surefire-plugin/
https://maven.apache.org/plugins/maven-jar-plugin/
https://maven.apache.org/plugins/maven-jar-plugin/
https://maven.apache.org/plugins/maven-install-plugin/
https://maven.apache.org/plugins/maven-deploy-plugin/
https://maven.apache.org/plugins/maven-war-plugin/
https://maven.apache.org/plugins/maven-ear-plugin/
https://maven.apache.org/plugins/maven-ejb-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-deploy-plugin/

* Maven Install Plugin
Idea and usage? Why?

* Mojo’s Buildnumber Maven Plugin
* Mojo’s Build Helper Maven Plugin

* Mojo’s Appassembler Maven Plugin
* Mojo’s Exec Maven Plugin

* Mojo’s SQL Maven Plugin

* Mojo’s Templating Maven Plugin

* Mojo’s Versions Maven Plugin

* More ?

http://mojo.codehaus.org/clirr-maven-plugin/ (really up-to-date? Not yet anymore.)

Google Code: maven-processor-plugin http://stackoverflow.com/questions/24345920/could-i-use-
java-6-annotation-processors-jsr-269-to-produce-code-for-gwt-in-ma

(DOES NOT EXIST ANYMORE: http://mvnplugins.fusesource.org/maven/1.4/maven-uberize-plugin/
compared-to-shade.html)

maven-graph-plugin
https://github.com/fusesource/mvnplugins/

(Looks interesting) http://site.kuali.org/maven/plugins/graph-maven-plugin/1.2.3/dependency-
graphs.html Can add the graphs a reports to the build. Take a deeper look into it.
http://site.kuali.org/maven/plugins/

Checksums http://nicoulaj.github.io/checksum-maven-plugin/
nar-maven-plugin: https://github.com/maven-nar/nar-maven-plugin
https://github.com/marceloverdijk/lesscss-maven-plugin

Take a deeper look into this http://docs.spring.io/spring-boot/docs/2.4.2/maven-plugin/usage.html
spring-boot-maven-plugin

Very interesting plugin: http://www.javacodegeeks.com/2014/08/maven-git-release.html

Let The Force Be With You

The larger a build becomes the more you need to control what happens within your build
otherwise the {link-broken-window-problem} occurs and will likely result in later problems you
should prevent.

How can you force rules within in your build? Sometimes it is not enough to suggest the best
practice you need to force the best practices within a build. The tool to do so is the Maven Enforcer
Plugin.

27

https://maven.apache.org/plugins/maven-install-plugin/
https://www.mojohaus.org/buildnumber-maven-plugin/
https://www.mojohaus.org/build-helper-maven-plugin/
https://www.mojohaus.org/appassembler-maven-plugin
https://www.mojohaus.org/exec-maven-plugin/
https://www.mojohaus.org/sql-maven-plugin/
https://www.mojohaus.org/templating-maven-plugin/
https://www.mojohaus.org/version-maven-plugin/
http://mojo.codehaus.org/clirr-maven-plugin/
http://stackoverflow.com/questions/24345920/could-i-use-java-6-annotation-processors-jsr-269-to-produce-code-for-gwt-in-ma
http://stackoverflow.com/questions/24345920/could-i-use-java-6-annotation-processors-jsr-269-to-produce-code-for-gwt-in-ma
http://mvnplugins.fusesource.org/maven/1.4/maven-uberize-plugin/compared-to-shade.html
http://mvnplugins.fusesource.org/maven/1.4/maven-uberize-plugin/compared-to-shade.html
https://github.com/fusesource/mvnplugins/
http://site.kuali.org/maven/plugins/graph-maven-plugin/1.2.3/dependency-graphs.html
http://site.kuali.org/maven/plugins/graph-maven-plugin/1.2.3/dependency-graphs.html
http://site.kuali.org/maven/plugins/
http://nicoulaj.github.io/checksum-maven-plugin/
https://github.com/maven-nar/nar-maven-plugin
https://github.com/marceloverdijk/lesscss-maven-plugin
http://docs.spring.io/spring-boot/docs/2.4.2/maven-plugin/usage.html
http://www.javacodegeeks.com/2014/08/maven-git-release.html
https://maven.apache.org/plugins/maven-enforcer-plugin/
https://maven.apache.org/plugins/maven-enforcer-plugin/

One of the basic things is to force your build is built with the correct Maven version, cause here
exist some things which don’t work with older Maven versions etc. The way to prevent building
with the wrong Maven version was to use the prerequsites tag like this:

<prerequisites>
<maven>3.8.7</maven>
</prerequisites>

but based on the improvements in Maven within Maven 3 the 'prerequisites’ part in the pom has
been marked as deprecated and will not be checked. So to make sure a build will only work with a
particular Maven version for example 3.1.1 you need to go the following path:

Example Configuration to define minimum Maven version
<project ...>

<build>
<plugins>
<plugin>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-enforcer-plugin</artifactId>
<executions>
<execution>
<id>enforce-maven</id>
<goals>
<goal>enforce</goal>
</goals>
<confiquration>
<rules>
<requireMavenVersion>
<version>${maven.version}</version>
</requireMavenVersion>
</rules>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>

</project>

Example Configuration to require same version

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-enforcer-plugin</artifactId>
<executions>
<execution>

28

<id>enforce-maven</id>
<goals>
<goal>enforce</qoal>
</goals>
<configuration>
<rules>
<requireSameVersions>
<plugins>
<plugin>org.apache.maven.plugins:maven-surefire-plugin</plugin>
<plugin>org.apache.maven.plugins:maven-failsafe-plugin</plugin>
<plugin>org.apache.maven.plugins:maven-surefire-report-plugin</plugin>
</plugins>
</requireSameVersions>
</rules>
</confiquration>
</execution>
</executions>
</plugin>

8.1.2. Maven compiler
Just a try. It’s related to this blog post:

* https://blog.soebes.io/posts/2023/06/2023-06-24-how-to-use-jdk21-preview-features-incubator/

29

https://blog.soebes.io/posts/2023/06/2023-06-24-how-to-use-jdk21-preview-features-incubator/

Chapter 9. Making Releases

Here you get an overview of the different options how to do a release with Maven.

9.1. Single Module Build

9.2. Multi Module Build

9.2.1. In One
The usual way?
Only releasing changed modules? What’s behind this question?

Pros/Cons?

9.2.2. Single Childs

Why needed?

9.3. Maven Release Plugin

pros/cons

9.4. The Traditional Maven Way

* maven-release-plugin
How it works? What is needed (how to configure it?)
maven-release-plugin etc. How it works. Pro’s and con’s.

Change the preparation goal in maven-release-plugin

9.5. Releases The CD Way

Releases in the time of Continuous Delivery. How to solve this via Maven? Is this possible? Maven
3.8.7,3.9.0,4.0.0...

Using Ci Friendly. with maven-scm-plugin.

* Prevent problems with using property in distributionManagement
http://www.youtube.com/watch?v=McTZtyb9M38
http://maven.40175.n5.nabble.com/Continuous-Delivery-and-Maven-td3245370.html

CI Delivery

30

http://www.youtube.com/watch?v=McTZtyb9M38
http://maven.40175.n5.nabble.com/Continuous-Delivery-and-Maven-td3245370.html
https://dev.to/khmarbaise/continuous-delivery-with-apache-maven—​4i03

http://stackoverflow.com/questions/18456111/what-is-the-maven-way-for-project-versions-when-
doing-continuous-delivery

An other kind of doing releases.. http://danielflower.github.io/2015/03/08/The-Multi-Module-Maven-
Release-Plugin-for-Git.html

31

http://stackoverflow.com/questions/18456111/what-is-the-maven-way-for-project-versions-when-doing-continuous-delivery
http://stackoverflow.com/questions/18456111/what-is-the-maven-way-for-project-versions-when-doing-continuous-delivery
http://danielflower.github.io/2015/03/08/The-Multi-Module-Maven-Release-Plugin-for-Git.html
http://danielflower.github.io/2015/03/08/The-Multi-Module-Maven-Release-Plugin-for-Git.html

Chapter 10. Continuous Integration Solution

10.1. More Details

Jenkins how to work in relationship with Jenkins. Which Plugins of Jenkins can be useful

32

Chapter 11. Build Smells

11.1. Creating Multiple Artifacts
Multiple Artifacts The Wrong Way

Creating multiple jars from a single module? (create a jar from package a.b.c and create an other
jar from packages a.b.d)?

Examples for build smells:

http://stackoverflow.com/questions/11448184/maven-jar-plugin-include-upper-dir

11.2. Not Part of the Life Cycle

Calling mvn assembly:single or assembly:assemble ? Why not being part of the build?
and use mvn package?

11.3. Multi Module Builds

accessing other modules via ${project.basedir}/../.. ?

11.3.1. Module Structure

» Parent of a multi-module-build is not located at root level of the structure?

11.3.2. The Install Hack
The Install Hack

You need to do mvn install in a multi-module build but mvn clean package will not work?

11.3.3. Separation of Concerns

Multiple Purposes of a Module
Use a module for only one purpose not for many. (Separation of Concern)

Trying to build different artifacts with a single project setup instead of going for multi-module-
setup. Clean separation.

11.4. Testing

* Not separated unit- and integration tests Configuration by using profile for unit and integration
tests

 Typical indicator having TestSuite class file etc.

33

http://stackoverflow.com/questions/11448184/maven-jar-plugin-include-upper-dir

11.5. Assemblies

* Looking on the file system instead of using the reactor Here: http://stackoverflow.com/questions/
23951547/how-to-create-single-target-from-multi-module-maven-project

* Warngings in relationship with maven-assembly-plugin (dir format!)

11.6. Problem with Profiles and Dependencies

http://blog.soebes.de/blog/2013/11/09/why-is-it-bad-to-activate-slash-deactive-modules-by-profiles-
in-maven/

11.7. What about dependencies by profiles?

Describe why and how and what the drawbacks are?

34

http://stackoverflow.com/questions/23951547/how-to-create-single-target-from-multi-module-maven-project
http://stackoverflow.com/questions/23951547/how-to-create-single-target-from-multi-module-maven-project
http://blog.soebes.de/blog/2013/11/09/why-is-it-bad-to-activate-slash-deactive-modules-by-profiles-in-maven/
http://blog.soebes.de/blog/2013/11/09/why-is-it-bad-to-activate-slash-deactive-modules-by-profiles-in-maven/

Chapter 12. Plugin Development

How to develop a plugin. Basics. Annotations? Example project.

How to test plugins?

NOTE Think about a good example here?

12.1. Reasons

* Reasons to develop a plugin?

* Why is it better to write a plugin instead using scripts/external execution of Java/Groovy/Kotlin
whatever code?

Often I see people developing maven plugins which are superfluous, cause the functionality is
already provided by one of the existing plugins or a combination of other plugins.

So the question is: When should I start to think about creating my own plugin? The simple answer
to this: If the needed functionality is not being provided by any existing plugin.

Example when to create a plugin?

12.2. Basics
What is a Mojo?

* The annotations for plugins which are needed?
* How to build a plugin?
* How to test a plugin?
* How to create a very basic plugin
12.2.1. Building a plugin

* What is needed to build a plugin?

* How does a Maven project look like for building a plugin?

12.3. Testing

Testing a plugin is one of the most challenging thing cause a plugin which is running inside a
container (Maven Runtime) has several aspects of testing.

In general there at least three different typs of tests you usually (should) write:

1. The Java code (more or less independent) functionality you would like to put into a plugin.

o Usually covered by unit/integration tests which you (should) already know.

35

2. The Mojo itself?
3. The interaction with a real project?

- How does a plugin behave within a real project setup?
Testing frameworks / Support

* Maven Invoker Plugin
* https://github.com/kKhmarbaise/maven-it-extension

* http://maven.apache.org/plugins/maven-invoker-plugin/index.html

https://github.com/asciidoctor/asciidoctor-maven-plugin

12.3.1. Compatibility
There a different aspect of compatibility. The first one is:

* Which minimum Java version you should support?

* Minimum Maven version you will require?

36

https://maven.apache.org/plugins/maven-invoker-plugin/
https://github.com/khmarbaise/maven-it-extension
http://maven.apache.org/plugins/maven-invoker-plugin/index.html
https://github.com/asciidoctor/asciidoctor-maven-plugin

Chapter 13. Plugin Configuration

How to configure plugins for the life cycle

13.1. General Configuration

Let us start with a minimal pom file.

Basic Example of Plugin Configuration
<modelVersion>4.0.0</modelVersion>

<!-- NEED TO REMOVE THE PARENT -->

<parent>
<groupId>com.soebes.tmpg.examples.basics</groupld>
<artifactId>basics-aggregator</artifactId>
<version>0.1.0-SNAPSHOT</version>

</parent>

<groupId>com.soebes.tmpg.examples.basics</groupld>
<artifactId>simplest-pom</artifactId>
<version>0.1.0-SNAPSHOT</version>

@O

<name>TMPG :: Examples :: Simplest POM</name>
</project>

@ The groupld
@ The artifactId

® The version
There are several options to configure a plugin.

¢ XX

* XXX

13.2. The build life cycle

37

Chapter 14. Performance tipps

14.1. Incremental Builds

incremental builds in Maven.

Improve the performance of your build.
http://grumpyapache.blogspot.de/2014/05/build-system-performnce-on-windows.html

Don’t use NFS neither do use NTFS...

38

http://grumpyapache.blogspot.de/2014/05/build-system-performnce-on-windows.html

Chapter 15. Repository Manager

This chapter will give you an overview of the idea the intention of a repository manager. It will also
show and describe the advantages of the usage of a repository manager.

15.1. Reasons
TODO:

* Why do you need a repository manager?
* Proxy to Central, XXx

» Using more external repositories than Central repository.

39

Chapter 16. Best Practices

keep the defaults...

16.1. Plugin Management

Define the plugins via pluginManagement...

16.2. Generate Into Source Folder

generating code into src folder instead of target. Pro/Cons on that approach..

In Maven the convention exists to put everything which is generated, compiled etc. into the target
folder of the appropriate module. Unfortunately in the wild you will find builds which do not
follow the convention and for example generate things into src folder which is a bad practice (Hint
why?).

So let use think about this a little more. The first thing is if you change something in src folder
means your version control system will be alarmed about such a change which on the other hand
means you will be alarmed about a change which is not really a change, cause generated code will
usually generate the same code from the same source but usually with some changed time stamp
within the generated code. The consequence on the above is you must exclude some areas from
your version control view to suppress such irritations.

The next thing is you need to change the configuration of your appropriate plugins, cause more or
less all plugins follow that conventions (ok there exist some exceptions). This implies your
configuration in your pom gets larger and of course does not follow the conventions over
configuration paradigm.

Other 'solutions’ which fall into the same category do something different. They generate into a
folder within 'target' things like 'target/generated-code' but they usually missed that plugins usually
add the generated code folder to the project sources folders automatically already. But in
contradiction they explicitly add the generated folder via supplemental plugins like 'build-helper-
maven-plugin' to the sources folder.

16.3. Dependencies / DependencyManagement

Scope only in real dependencies not in dependencyManagement

means always use scope:test in the real project and not in dependencyManagement

16.4. Deps via Props
Using properties to control the dependencies with a so called company pom?

Result: Complete build is necessary instead of using released within a build.

40

16.5. Company wide parent(s)

Manifest setup with master parent.

<confiquration>
<archive>
<addMavenDescriptor>true</addMavenDescriptor>
<index>true</index>
<manifest>
<addDefaultImplementationEntries>true</addDefaultImplementationEntries> @
<addDefaultSpecificationEntries>true</addDefaultSpecificationEntries> @
</manifest>
<manifestEntries>
<artifactId>${project.artifactId}</artifactId> @
<groupId>${project.groupIld}</groupId>
<version>${project.version}</version>
<buildNumber>${buildNumber}</buildNumber>
<scmBranch>${scmBranch}</scmBranch>
</manifestEntries>
</archive>
</configuration>

@ The groupld
@ The artifactld

® The version

What should be defined in such a parent? http://stackoverflow.com/questions/24409889/where-
should-i-keep-my-companys-parent-pom

Style Guide for POM files. SortPom (default style for pom files)
Why you should never use version ranges?

No different dependencies via profiles! Why ? The consequences?
Naming modules based on their artifactId’s.

Don’t do this: http://stackoverflow.com/questions/23901560/how-to-handle-different-dependencies-
requirements-for-web-servers-in-pom-xml

Ideas like this: http://developer-blog.cloudbees.com/2013/03/playing-trade-offs-with-maven.html

What is a good solution for such kind of questions: http://stackoverflow.com/questions/24248873/
maven-package-resources-with-classes Answer: create a mod-core, mod-war and that’s it?

16.6. Building for different Environments

You are often face with the problem having different environments like dev, test, prod this is just a
simple example how real life is.

41

http://stackoverflow.com/questions/24409889/where-should-i-keep-my-companys-parent-pom
http://stackoverflow.com/questions/24409889/where-should-i-keep-my-companys-parent-pom
http://stackoverflow.com/questions/23901560/how-to-handle-different-dependencies-requirements-for-web-servers-in-pom-xml
http://stackoverflow.com/questions/23901560/how-to-handle-different-dependencies-requirements-for-web-servers-in-pom-xml
http://developer-blog.cloudbees.com/2013/03/playing-trade-offs-with-maven.html
http://stackoverflow.com/questions/24248873/maven-package-resources-with-classes
http://stackoverflow.com/questions/24248873/maven-package-resources-with-classes

16.7. How to do good integration tests for maven
plugins

One of the final tests should be to clean your local repository and start your integration tests of
your plugin from scratch

rm -fr $HOME/.m2/repository mvn -Prun-its clean verify

This should work without any problem.

16.8. Nexus

why the order of the repositories does really matter...

16.9. Branching Strategies

http://stackoverflow.com/questions/24420474/do-you-really-need-to-version-the-trunk-of-a-maven-
project

https://github.com/lewisd32/lint-maven-plugin

42

http://stackoverflow.com/questions/24420474/do-you-really-need-to-version-the-trunk-of-a-maven-project
http://stackoverflow.com/questions/24420474/do-you-really-need-to-version-the-trunk-of-a-maven-project
https://github.com/lewisd32/lint-maven-plugin

Chapter 17. Exceptions from Best Practices

This part will describe/discuss exceptions from the best practices or in other words ignoring
conventions over configuration.

17.1. Layout

Sometimes people to say I don’t want to follow best practices. For example using a different
directory layout? You can do that if you really need that, but it depends...

The first question I ask in such a situation is: Why do you like to do that? What kind of problem are
you trying to solve?

43

Chapter 18. Site

Reporting in Maven. How to configure it? What can be done?

generating sites with Maven The maven site life cycle.

18.1. Maven Site Plugin

* Configure the site?

e What is needed?

44

Chapter 19. Profiles

Why and how to use Profiles.
Typical scenarios where to use profiles.
CI build (jenkins) etc.

Situations where you shouldn’t use profiles.

19.1. Basics

19.1.1. Environment Dependent

19.2. Bad Practices

Don’t use profiles to activate/deactive modules

45

https://blog.soebes.de/blog/2013/11/09/why-is-it-bad-to-activate-slash-deactive-modules-by-profiles-in-maven/

Chapter 20. Different Environments

In the wild a usual problem occurs having configurations for different environments like
development, test, q&a and production. The differences between those environments are most
likely things like username, password for an database connection or may be other things.

I have to admit that the example with the database connection is not the best, cause this would
imply having such critical information within your application which you never should do in real
life. This is chosen only as an example for information which are definitively different from
environment to environment.

Let us make a more realistic example out of this to get more relationship to the real world. So we
create an examples which consists of several files which are different from environment to
environment.

get the whole lecture of GearConf2013

How to build for prod, dev, ga environment etc.
https://blog.soebes.io/posts/2016/05/2016-05-08-building-for-multiple-environments/
https://blog.soebes.io/posts/2011/2011-07-29-maven-configuration-for-multipe-environments/

https://blog.soebes.io/posts/2011/2011-08-11-maven-configuration-for-multipe-environments-ii/

20.1. The Solutions

20.2. The Obvious Solution

Many people using Maven would suggest to use profiles for such purposes. So you have different
profiles which define the filtered values for the appropriate environments and you will build the
appropriate artifacts.

This will result in calling Maven with the following commands to produce artifacts for the different
environments.

mvn -Pdevelopment clean package
mvn -Ptest clean package

mvn -Pga clean package

mvn -Pproduction clean package

But unfortunately this approach has one big drawback. How would you call Maven if you need the
artifacts for development, test, q&a and production? So your answer might look like this?

mvn -Pdevelopment,test,qa,production clean package
The disadvantage of this approach is that you have to give all these parameters every time you call

46

https://blog.soebes.io/posts/2016/05/2016-05-08-building-for-multiple-environments/
https://blog.soebes.io/posts/2011/2011-07-29-maven-configuration-for-multipe-environments/
https://blog.soebes.io/posts/2011/2011-08-11-maven-configuration-for-multipe-environments-ii/

Maven maybe in several permutations depending on which environment you would like to build.
What does in practice happen? You simply forget them. Have you remembered to change the
configuration of your CI solution? Have you informed all your teammates? I bet you missed
something.

So solution should work by simply calling Maven like this:
mvn clean package

So in conclusion this approach is not ideal.
Picture of the application ?

What are the drawbacks of such a solution?

20.3. The next

47

Chapter 21. Maven 4

What kind of things have been enhanced, changed, improved. Compatibility.?

Plugins?

21.1. Consumer vs. Build POM
21.2. Improved Reactor Behaviour
21.3. Caching

21.4. Plugins

48

Appendix A: Example Appendix

One or more optional appendixes go here at section level 1.

A.1. Appendix Sub-section

Sub-section body.

A.2. Example Glossary

Glossaries are optional. Glossaries entries are an example of a style of AsciiDoc labeled lists.

49

Chapter 22. Example Bibliography

The bibliography list is a style of AsciiDoc bulleted list.

Books

= [taoup] Eric Steven Raymond. 'The Art of Unix Programming'. Addison-Wesley. ISBN 0-13-
142901-9.

= [walsh-muellner] Norman Walsh & Leonard Muellner. 'DocBook - The Definitive Guide'. O’Reilly

& Associates. 1999. ISBN 1-56592-580-7.

Articles

= [abc2003] Gall Anonim. 'An article', Whatever. 2003.

Glossary

Maven
What is Maven

GAV

groupld, artifactld, version

Index

F

Frameworks
JUnit Jupiter, 8

J
JUnit

JUnit Jupiter, 8
T

Testing
Integration Testing, 8
Unit testing, 8

U

unit testing, 8

50

	The Maven Practical Guide
	Table of Contents
	Colophon
	Preface
	Project Metadata
	THIS IS WORK IN PROGRESS
	Overview

	Chapter 1. The Basics
	1.1. The Foundation
	1.2. The build life cycle
	1.2.1. Directory Structure

	1.3. The Coordinates
	1.4. Coordinates
	1.5. Versions
	1.5.1. SNAPSHOT
	1.5.2. Releases

	Chapter 2. Single Module Projects
	2.1. Directory Structure
	2.1.1. Different dependent projects

	Chapter 3. Testing with Maven
	3.1. Project Setup
	3.1.1. Unit Testing
	3.1.2. Integration Testing
	3.1.3. Testing Suites
	3.1.4. Testing Frameworks
	JUnit 4
	Test NG
	JUnit Jupiter
	Combining

	3.1.5. Unit Testing
	3.1.6. Integration Testing
	Importance of Separation

	3.1.7. Combining Unit- and Integration Testing
	End To End Testing

	Chapter 4. Parent
	4.1. Overview

	Chapter 5. Multi Module Builds
	5.1. Basic Structure
	5.1.1. Directory Structure
	5.1.2. The Multi-Module-Parent

	5.2. Releasing a Multi module Project
	5.2.1. Examples
	XXX

	5.3. Spring Boot

	Chapter 6. Code Coverage
	6.1. JaCoCo
	6.1.1. single Module Setup
	6.1.2. Multi Module Setup

	6.2. Mutation Testing

	Chapter 7. Maven Assemblies
	7.1. Overview
	7.1.1. The Maven Assembly Plugin
	Single Executable Artifact
	Creating an ZIP Archive
	Default Assemblies
	Predefined Descriptors
	Module Sets
	Dependency Sets
	Sources
	Predefined Descriptors

	Chapter 8. Plugins
	8.1. The Plugin Sources
	8.1.1. The Different Plugins
	Clean Everything
	Resources
	Let The Source Be With You
	Let’s See If The Code Is Working?
	Let The Jar’s Come To Me
	Install The Archive
	Distribute It To The World
	Let The Force Be With You

	8.1.2. Maven compiler

	Chapter 9. Making Releases
	9.1. Single Module Build
	9.2. Multi Module Build
	9.2.1. In One
	9.2.2. Single Childs

	9.3. Maven Release Plugin
	9.4. The Traditional Maven Way
	9.5. Releases The CD Way

	Chapter 10. Continuous Integration Solution
	10.1. More Details

	Chapter 11. Build Smells
	11.1. Creating Multiple Artifacts
	11.2. Not Part of the Life Cycle
	11.3. Multi Module Builds
	11.3.1. Module Structure
	11.3.2. The Install Hack
	11.3.3. Separation of Concerns

	11.4. Testing
	11.5. Assemblies
	11.6. Problem with Profiles and Dependencies
	11.7. What about dependencies by profiles?

	Chapter 12. Plugin Development
	12.1. Reasons
	12.2. Basics
	12.2.1. Building a plugin

	12.3. Testing
	12.3.1. Compatibility

	Chapter 13. Plugin Configuration
	13.1. General Configuration
	13.2. The build life cycle

	Chapter 14. Performance tipps
	14.1. Incremental Builds

	Chapter 15. Repository Manager
	15.1. Reasons

	Chapter 16. Best Practices
	16.1. Plugin Management
	16.2. Generate Into Source Folder
	16.3. Dependencies / DependencyManagement
	16.4. Deps via Props
	16.5. Company wide parent(s)
	16.6. Building for different Environments
	16.7. How to do good integration tests for maven plugins
	16.8. Nexus
	16.9. Branching Strategies

	Chapter 17. Exceptions from Best Practices
	17.1. Layout

	Chapter 18. Site
	18.1. Maven Site Plugin

	Chapter 19. Profiles
	19.1. Basics
	19.1.1. Environment Dependent

	19.2. Bad Practices

	Chapter 20. Different Environments
	20.1. The Solutions
	20.2. The Obvious Solution
	20.3. The next

	Chapter 21. Maven 4
	21.1. Consumer vs. Build POM
	21.2. Improved Reactor Behaviour
	21.3. Caching
	21.4. Plugins

	Appendix A: Example Appendix
	A.1. Appendix Sub-section
	A.2. Example Glossary

	Chapter 22. Example Bibliography
	Glossary
	Index

