Integration Testing Framework
Concept Guide

Table of Contents

1. What is this?
2. Overview
3. Structuring Integration Tests
3.1. The Test Class(es)
3.2. Test Case Execution
3.3. Parallelization
4. Ideas
4.1. Separation of the cache (aka Local Maven Repository)
4.2. Mock Repository Manager
4.3. Setup Projects
4.4. General Setup Repositories
4.5. General Setup Repositories incl. Snapshots
5. Real Life Examples
5.1. Maven Assembly plugin
5.2. Versions Maven Plugin
6. Log Assertion
7.1deas
7.1. IDE Integration
7.2. Test Execution
8. Annotations / Repeatable Annotations
8.1. Example Test case
8.2. Rule for Nested Classes
8.3. Ideas
8.4. Implementation Steps
9. Configuration / Resources-its
9.1. Current State
9.2. Change it
10. Injections
10.1. MavenProjectResult, MavenProject, Model
11. Open Things

OO R W W N DN

BW W W W W W W WNDNDNDNDNDN R R R
S 00 00 0N 9 9 N0 0 ksksRrEWWwWww o gk N o

1. What is this?

This is a concept guide for me as a developer to write down ideas and conceptional things about the
Maven Integration Testing framework.

* How I think things could be done from a user perspective
* How I might implement things
* What kind of limitations I think exist or not

* I taken a deeper look into existing integration tests and check how I could handle that with
current development or what’s needed to target the issues etc.

This is neither the status of the development nor something which is
WARNING implemented. There are things which already implemented from this guide
but they must not.

2. Overview

The expressiveness of tests is a very important part of writing integration tests or test in general. If
a test is not easy to understand it is very likely not being written.

Lets take a look into the following code which gives you an impression how an integration test for a
Maven Plugins/Maven Extensions/Maven-Core should look like:

package org.it;
import static org.assertj.core.api.Assertions.assertThat;

import com.soebes.itf.jupiter.extension.MavenJupiterExtension;
import com.soebes.itf.jupiter.extension.MavenTest;
import com.soebes.itf.jupiter.maven.MavenExecutionResult;

class FirstMavenIT {

void the_first_test case(MavenExecutionResult result) {
assertThat(result)
.build()
.isSuccessful()
.and()
.project()
.hasTarget()
.withEarFile()
.containsOnlyOnce("META-INF/MANIFEST.MF")
.1og()
.info().contains("Writing data to file")
.cache()

https://maven.apache.org/plugins/

.withEarFile("G:A:V")
.withPomFile("G:A:V")
.withMetadata().contains("xxx");

3. Structuring Integration Tests

3.1. The Test Class(es)

The location of the above integration test defaults to src/test/java/<package>/FirstMavenIT.java.
The selected name like <any>IT.java implies that it will be executed by Maven Failsafe Plugin by
convention. This will result in a directory structure as follows:

L—— src/
L—— test/
L—— java/
L—— org/
L— it/

L—— FirstIT.java

For the defined integration tests we need also projects which are the real test cases (Maven
projects). This needs to be put somewhere in the directory tree to be easily associated with the test
FirstMavenIT.

The project to be used as an test case is implied to be located into src/test/resources-
its/<package>/FirstMavenIT this looks like this:

L—— sre/
L—— test/

L—— resources-its/
L—— org/
L—— jt/

L—— FirstIT/

But now where to put the separated test cases? This can easily achieved by using the method
name within the test class FirstIT which is the_first_test_case in our example. This results in the
following directory layout:

L—— sre/
L—— test/

L—— resources-its/

https://maven.apache.org/surefire/maven-failsafe-plugin/

L—— org/
L it/
L—— FirstIT/
L—— the_first_test_case/

F—— src/

L—— pom.xml

This approach gives us the opportunity to write several integration test cases within a single test
class FirstIT and also separates them easily.

3.2. Test Case Execution

During the execution of the integration tests the following directory structure will be created within
the target directory:

L——target/

L—— maven-its/
L—— org/

L— it/
L—— FirstIT/

L—— the first_test case/
.m2/
project/
F—— sre/
—— target/
L—— pom. xml
—— mvn-stdout.log

—— mvn-stderr.log
L—— other logs

I

Based on the above you can see that each test case (method within the test class) has it’s own local
cache (.m2/repository). Furthermore you see that the project is built within the project folder. This
gives you a view of the built project as you did on plain command line and take a look into it. The
output of the built is written into mvn-stdout.log (stdout) and the output to stderr is written to mvn-
stderr.log.

3.3. Parallelization

Based on the previous definitions and structure you can now derive the structure of the test cases
as well as the resulting output in target directory if you take a look into the following example:

package org.it;
import static org.assertj.core.api.Assertions.assertThat;

import com.soebes.itf.jupiter.extension.MavenJupiterExtension;

import com.soebes.itf.jupiter.extension.MavenTest;
import com.soebes.itf.jupiter.maven.MavenExecutionResult;

class FirstMavenIT {

void the_first_test case(MavenExecutionResult result) {

}

void the_second test case(MavenExecutionResult result) {

}

void the_third_test case(MavenExecutionResult result) {

}
}

The structure of the Maven projects in resources-its directory:

— spey
L—— test/
L—— resources-its/
L—— org/
L it/

L—— FirstMavenIT/
—— the_first_test case/
| F—— src/
| L—— pom. xml
——— the_second_test case/
| F—— src/
| L—— pom. xml
L—— the_this_test_case/

F—— src/

L—— pom.xml

The resulting structure after run will look like this:

L——target/

L—— maven-its/
L—— org/

L—— it/
L—— FirstMavenIT/
L—— the first_test case/

| F—— .m2/

—— project/

| src/

| target/

| pom. xml
—— mvn-stdout.log

—— mvn-stderr.log
L—— other logs

—— the_second_test _case/
F— .m2/
—— project/
| F—— src/
| —— target/

|
|
|
|
| | L—— pom.xml
|
|
|

T

—— mvn-stdout.log

—— mvn-stderr.log
L—— other logs

L—— the_third_test case/

F—— .m2/

—— project/

| F—— src/

| —— target/

| L—— pom. xml

—— mvn-stdout.log
—— mvn-stderr.log
L—— other logs

So this means we can easily parallelize the execution of each test case the_first_test_case,
the_second_test_case and the_third_test_case cause each test case is decoupled from each other.

to make separated from log files and local cache. The result of this setup is that each test case is
completely separated from each other test case and gives us an easy way to parallelize the
integration test cases in a simple way.

4. Ideas

4.1. Separation of the cache (aka Local Maven
Repository)

@MavenRepository should be implemented as separate Extension or separate annotation?

Currently the definition for the cache would be defined in one go with the MavenJupiterExtension
annotations which implies the following test cases would assume that the cache is defined for all
tests which means globally to the given class which in the following is not correct as it is newly
defined for the NestedExample class. If I redefined the
@MavenJupiterExtension(mavenCache=MavenCache.Global) on the nested class NestedExample it would
result into having an other cache for the nested class but not what I wanted to have.

So the cache definition should not being made in relationship with the MavenJupiterExtension

annotation.

@MavenJupiterExtension(mavenCache = MavenCache.Global)
class MavenIntegrationExampleNestedGlobalRepoIT {

@MavenTest
void packaging_includes(MavenExecutionResult result) {

}

@MavenJupiterExtension
class NestedExample {

@MavenTest
void basic(MavenExecutionResult result) {

}

@MavenTest
void packaging_includes(MavenExecutionResult result) {

}

The solution would be to have a separate annotation for the @MavenRepository to define the cache.
So the following code shows directly that the repository is defined on the highest class level which
can be inherited automatically. The annotation in its default form defines the repository to be
defined in .m2/repository. It might be a good idea to make it configurable(?) If we like to change the
behaviour in derived class the annotation can be added on the derived classes as well.

@MavenJupiterExtension
@MavenRepository
class MavenIntegrationExampleNestedGlobalRepolT {

@MavenTest
void packaging_includes(MavenExecutionResult result) {

}

@MavenJupiterExtension
class NestedExample {

@MavenTest
void basic(MavenExecutionResult result) {

}

@MavenTest
void packaging_includes(MavenExecutionResult result) {

}

The following gives you an impression of making the repository defined in another directory. (This
would overwrite the default.)

(".anton")
class MavenIntegrationExampleNestedGlobalRepoIT {

void packaging_includes(MavenExecutionResult result) {

}
class NestedExample {

void basic(MavenExecutionResult result) {

}

void packaging_includes(MavenExecutionResult result) {
}
}
}

The annotation is better decision to be open for later enhancements if we think about separating
repositories for releases, snapshots etc. So this annotation could easily enhanced with parameters
like the following:

import com.soebes.itf.jupiter.extension.MavenJupiterExtension;

(releases=".releases", snapshots=".snapshots")
class IntegrationIT {

}

4.2. Mock Repository Manager

The Mock Repository Manager is as the name implies a mock for a repository. This is sometimes
useful to test things like creating releases Maven Release Plugin or define particular content for
remote repositories within integration tests for the Versions Maven Plugin.

In general there are coming up the following questions:

https://github.com/apache/maven-release/tree/master/maven-release-plugin
https://github.com/mojohaus/versions-maven-plugin

* Based on the parallel nature of those integration tests we need to prevent using the same port
for each execution. This needs to be injected into the appropriate test run. Usually we would use
localhost:Port (Is localhost sufficient?).

» Arepository manager can be used to deploy artifacts (during a test) into it and afterwards check
the content somehow. (For example if checksum have been correctly created and deployed).

* A repository manager could be used to download artifacts from it. ? Test Case? (Reconsider?)

* Reuse of existing repos (filled up with special dependencies) in several tests cases to prevent
copying of all artifacts?

class FirstMavenIT {

void the_first_test case(MavenExecutionResult result) {
//
}

We need to assume that for the execution of Mock Repository Manager we need to have a
settings.xml template available which can be filled with the current values and being placed into
the resulting test case directory.

After running an integration test with support of the Mock Repository Manager the directory
structure looks like the following:

L——target/
L—— maven-its/
L—— org/
L— it/
| settings.xml (Template)
L—— FirstMavenIT/
L—— the_first_test_case/
.m2/
project/
F—— src/
—— target/
L—— pom.xml
—— mvn-stdout.log
—— mvn-stderr.log
—— settings.xml

L—— other logs

I

There are several things to be defined like the source repository which contains artifacts already
installed an repository

https://www.mojohaus.org/mrm/mrm-maven-plugin/examples/invoker-tests.html
https://www.mojohaus.org/mrm/mrm-maven-plugin/examples/invoker-tests.html

The default directory where to find artifacts which are already within the repository can be found
in a directory called .mrm at the same level as the @MavenMockRepositoryManager annotation.

The position where we defined the @MavenMockRepositoryManager annotation shows us on which
level we would like to support the usage of it. The above example defines it on integration test class
level which means all methods/nested classes will inherit it by default if not overwritten.

The following examples shows that the mock repository manager will only be used for the single
test case the_second_test_case.

class FirstMavenIT {

void the first test case(MavenExecutionResult result) {
//
}

void the_second test case(MavenExecutionResult result) {
//
}

If we would like to have a mock repository manager should be used for a larger number of tests we
could define the annotation @MavenMockRepositoryManager on a separate class/interface which is
implemented/extends from for the classes which should be used.

4.2.1. Implementation Hints

* Maybe we can simply use the mrm modules like mrm-api, mrm-servlet and mrm-webapp.

4.3. Setup Projects

We have in general three different scenarios.

Scenarios

* Project setup for a single test case
* Project setup for a number of test cases.

* Global setup projects which should be executed only once.

4.3.1. Setup Project for single test case

Based on the nested class option in JUnit jupiter it would be the best approach to express that via
nested class with only a single test case and an appropriate @BeforeEach method which describes the

10

pre defined setup.

package org.it;

import static org.assertj.core.api.Assertions.assertThat;
import com.soebes.itf.jupiter.extension.MavenJupiterExtension;
import com.soebes.itf.jupiter.extension.MavenTest;

import com.soebes.itf.jupiter.maven.MavenExecutionResult;
import org.junit.jupiter.api.Nested;

class FirstMavenIT {

class TestCaseWithSetup {

void beforeEach(MavenExecutionResult result) {
//..
}

void the first_test case(MavenExecutionResult result) {

void the_first_test case(MavenExecutionResult result) {

void the_second_test case(MavenExecutionResult result) {

4.3.2. Setup Project for a number of test cases

The best and simplest solution would be to use the @BeforeEach annotation. That would make the
intention of the author easy to understand and simply being expressed.

The disadvantage of this setup would be to execute a full maven build for the setup project within
the beforeEach method for each test case method.

One issue is the question where to put the cache for all those test cases?

One requirement based on the above idea is to use the same cache for the beforeEach and the
appropriate test case. What about parallelization? The beforeEach and the particular test case must

11

be using the same cache otherwise we have no relationship between the beforeEach method and
the particular test cases? Is this a good idea? (We have made the assumption if not defined different
that each test case is using a separate cache) It could assumed having a global cache for test cases
which are within the nested class?

package org.it;
import static org.assertj.core.api.Assertions.assertThat;

import com.soebes.itf.jupiter.extension.MavenJupiterExtension;
import com.soebes.itf.jupiter.extension.MavenTest;

import com.soebes.itf.jupiter.maven.MavenExecutionResult;
import org.junit.jupiter.api.BeforeEach;

class FirstMavenIT {

void beforeEach(MavenExecutionResult result) {
//..

}

void the first_test case(MavenExecutionResult result) {
//...

void the_second test case(MavenExecutionResult result) {
//...

void the_third_test case(MavenExecutionResult result) {
//...

Baseds on the previously written the conclusion would be to make it possible to use inheritance
between the test classes to express a setup/beforeach for a hierarchie of integration test cases which
from my point of view sounds like a bad idea? Need to reconsider?

4.4. General Setup Repositories

General Setup repositories which already contains particular dependencies which are needed for
test cases. Here we need to make it possible having a local repository to be pre defined on a test
case base or on test class or even on several classes or all tests.

The simplest solution would be to create a directory called something like .predefined-repo in a
particular directory level which implies that this directory will be used as a repository. This can be

12

taken as a pre installed local cache with particular dependencies etc.

Let us take a look at the example:

L—— sre/
L—— test/

L—— resources-its/
L—— org/
L it/
L—— FirstIT/
L—— the_first_test case/
—— .predefined-repo
F—— src/

L—— pom.xml

This would mean that the .predefined-repo contains already installed artifacts etc. which can be
used to run a test against this based on the method name the_first_test_case this is limited to a
single test method.

This can be made a more general thing to define it on a class level like the following:

L—— sre/
L—— test/

L—— resources-its/
L—— org/

L— it/
L—— FirstIT/
—— .predefined-repo
L—— the first_test case/

| F—— src/

| L—— pom. xml
L—— the_second_test case/

F—— src/

L—— pom. xml

This would mean having a predefined repository defined for all test cases within the whole test
class (the_first_test case and the_second_test_case).

If we move that directory level up like the following:

L—— sre/
L—— test/

L—— resources-its/
L—— org/
L— it/

13

—— .predefined-repo
L—— FirstIT/
L—— the first_test case/
F—— src/

L—— pom. xml

This would mean that the predefined repository is available for all integration test classes within
the whole package inclusive all sub packages.

4.5. General Setup Repositories incl. Snapshots

L—— sre/
L—— test/
L—— resources-its/
L—— org/
L it/
L—— FirstIT/
L—— the first_test case/
—— .pre-release-repo
—— .pre-snapshot-repo
F—— src/

L—— pom. xml

This would mean that the .pre-release-repo contains already installed artifacts etc. The .pre-
snapshot-repo contains snapshots of particular aritifacts.

To get above usable in Maven you have to have a settings.xml which contains the appropriate
configuration which looks like this:

We have to define the central repo and the snapshot repo. This will limit the access of this build to
outside repositories.

settings.xml

<settings>
<profiles>
<profile>
<id>it-repo</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<repositories>
<repository>
<id>local.central</id>
<url>file:///Users/xxx/.m2/repository</url>
<releases>
<enabled>true</enabled>
</releases>

14

<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
<repository>
<id>local.snapshot</id>
<url>file:///Users/xxxx/project/m2snapshots</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>local.central</id>
<url>file:///Users/khmarbaise/.m2/repository</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
</settings>

5. Real Life Examples

Within this chapter we describe different integration test cases which are done in integration tests
with maven-invoker or with other tests for different maven plugins etc. to see if we missed
something which is needed to get that framework forward.

5.1. Maven Assembly plugin

5.1.1. Custom-ContainerDescriptorHandler Test Case

https://github.com/apache/maven-assembly-plugin/blob/master/src/it/projects/container-
descriptors/custom-containerDescriptorHandler

Example Test case custom-containerDescriptorHandler from Maven Assembly Plugin:

custom-containerDescriptorHandler (master)$ tree

15

https://github.com/apache/maven-assembly-plugin/blob/master/src/it/projects/container-descriptors/custom-containerDescriptorHandler
https://github.com/apache/maven-assembly-plugin/blob/master/src/it/projects/container-descriptors/custom-containerDescriptorHandler

[—— assembly
—— a.properties
—— pom. xml

|

!

| L—— sre

| ——— assemble

| | L—— bin.xml

| L—— config

| ——a

| | L—— file.txt
| ——b

| L—— file.txt

—— handler-def

L—— META-INF
L—— plexus

|
|
!
| L—— resources
|
|
| L—— components. xml

—— 1nvoker.properties
—— pom.xml @

L—— verify.bsh

@ What is the purpose of this pom file?

Based on the invoker.properties file this test case is divided into two steps: The first step is to
install the handler-def project into local cache and second run package phase on the project
assembly.

invoker.properties

invoker.project.1=handler-def
invoker.goals.1=install

invoker.project.2=assembly
invoker.goals.2=package

The question is coming up how can we translate that to the new integration test framework. The
simple answer is like this:

CustomContainerDescriptorHandlerIT.java
package org.it;
import static com.soebes.itf.extension.assertj.MavenITAssertions.assertThat;
import com.soebes.itf.jupiter.extension.MavenJupiterExtension;
import com.soebes.itf.jupiter.extension.MavenRepository;

import com.soebes.itf.jupiter.extension.MavenTest;
import com.soebes.itf.jupiter.maven.MavenExecutionResult;

16

import org.junit.jupiter.api.MethodOrderer.OrderAnnotation;
import org.junit.jupiter.api.Order;
import org.junit.jupiter.api.TestMethodOrder;

@MavenJupiterExtension

@MavenRepository
@TestMethodOrder(OrderAnnotation.class)
class CustomContainerDescriptorHandlerIT {

@MavenGoal("install")

@MavenTest

@0rder(10)

void handler_ref(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}

@MavenTest
void assembly(MavenExecutionResult result) {
assertThat(result).isSuccessful();
// check content of the ‘assembly/target/ directory
// Details see https://github.com/apache/maven-assembly-
plugin/blob/master/src/it/projects/container-descriptors/custom-
containerDescriptorHandler/verify.bsh

}

Currently this test case contains a single issue which means it uses an project which is run as a
general setup project from Maven Invoker Plugin. https://github.com/apache/maven-assembly-
plugin/tree/master/src/it/it-project-parent

Based on this setup you will get separated log files for each run in it’s own directory not
concatenated into a single file.

5.1.2. Grouping Test Cases

This will result in grouping tests within the single class.
Thinking into another level a test could look like this:
ContainerDescriptorHandlerITjava
package org.it;
import static com.soebes.itf.extension.assertj.MavenITAssertions.assertThat;
import com.soebes.itf.jupiter.extension.MavenJupiterExtension;
import com.soebes.itf.jupiter.extension.MavenRepository;

import com.soebes.itf.jupiter.extension.MavenTest;
import com.soebes.itf.jupiter.maven.MavenExecutionResult;

17

https://maven.apache.org/plugins/maven-invoker-plugin
https://github.com/apache/maven-assembly-plugin/tree/master/src/it/it-project-parent
https://github.com/apache/maven-assembly-plugin/tree/master/src/it/it-project-parent

import org.junit.jupiter.api.MethodOrderer.OrderAnnotation;
import org.junit.jupiter.api.Nested;

import org.junit.jupiter.api.Order;

import org.junit.jupiter.api.TestMethodOrder;

@TestMethodOrder(OrderAnnotation.class)
@MavenJupiterExtension
class ContainerDescriptorsIT {

@Nested
@MavenRepository
class CustomContainerDescriptorHandler {

@MavenGoal("install")

@MavenTest

@0rder(10)

void handler_ref(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}

@MavenTest
void assembly(MavenExecutionResult result) {
assertThat(result).isSuccessful();
// check content of the ‘assembly/target/ directory
// Details see https://github.com/apache/maven-assembly-
plugin/blob/master/src/it/projects/container-descriptors/custom-
containerDescriptorHandler/verify.bsh
}
}

@Nested
@MavenRepository
class ConfiguredHandler {

@MavenGoal("install")

@MavenTest

@0rder(10)

void handler_ref(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}

@MavenTest
void assembly(MavenExecutionResult result) {
assertThat(result).isSuccessful();
// check content of the ‘assembly/target/ directory
// Details see https://github.com/apache/maven-assembly-
plugin/blob/master/src/it/projects/container-descriptors/custom-
containerDescriptorHandler/verify.bsh
}
}

18

5.2. Versions Maven Plugin

5.2.1. The Test case Example 1

Several of the integration test cases for the Versions Maven Plugins are using the following content
for the invoker.properties (or very similar)

invoker.properites
invoker.goals=${project.groupId}:${project.artifactId}:${project.version}:compare-

dependencies
invoker.systemPropertiesFile = test.properties

and the test.properties files looks like this:

test.properties

remotePom=1ocalhost:dummy-bom-pom:1.0
reportOutputFile=target/depDiffs.txt

so the first part in invoker.properties which contains invoker.goals means to call Maven like this:
mvn ${project.groupId}:${project.artifactId}:${project.version}:compare-dependencies

where a placeholder ${project.groupld} is being replaced with the groupId of the project (plugin)
which the tests should run on. ${project.artifactId} will be replaced with the artifactId and
${project.version} with the version of the project. In the end a call will look like this:

mvn org.codehaus.mojo:versions-maven-plugin:2.7.0-SNAPSHOT:compare-dependencies

Now let us come to the test.properties which is simply being translated to the following:
(backslashes are only added to make it more readable)

mvn org.codehaus.mojo:versions-maven-plugin:2.7.0-SNAPSHOT: compare-dependencies \
-DremotePom="1ocalhost:dummy-bom-pom:1.0" \
-DreportQutputFile="target/depDiffs.txt"

Now let us assume we could translate that very easy:

FirstITjava

class CustomContainerDescriptorHandlerIT {

19

https://github.com/mojohaus/versions-maven-plugin

("${project.groupId}:${project.artifactId}:${project.version}:compare-
dependencies")

void calling_a_goal(...) {
}

("${project.groupId}:${project.artifactId}:${project.version}:compare-
dependencies")

(value
(value

"remotePom", content="1localhost:dummy-bom-pom:1.0")
"reportOutputFile", content="target/depDiffs.txt")

void calling_a_goal_with_sytem_properties(...) {

}
}

Now I'm asking why do we use this bunch of placeholders
${project.groupId}:${project.artifactId}:${project.version}. Only based on the fear that the
groupld or artifactld or version could change. A change in groupld or artifactld is very rare. I've
never seen a change in groupld nor artifactld in plugin projects. What changes more often is the
version of the artifact which means with each release. So it would make sense to define for the
version a placeholder like ${project.version}.

Based on the approach to simply read the pom.xml file of the project under test this

NOTE
can be solved easily. This makes it also possible to run the IT within the IDE.

5.2.2. Testcase

5.2.3. Test Case IT-SET-001

The following invoker.properties describes a test case which comprises of two consecutive calls of
Maven on the same directory (project):

it-set-001

invoker.goals.1=${project.groupId}:${project.artifactId}:${project.version}:set
-DnewVersion=2.0

invoker.nonRecursive.1=true

invoker.buildResult.1=success

invoker.goals.2=${project.groupId}:${project.artifactId}:${project.version}:set
-DnewVersion=2.0 -DgroupId=* -DartifactId=* -DoldVersion=*

invoker.nonRecursive.2=true

invoker.buildResult.2=success

invoker.description.2=Test the set mojo when the new version is the same as the old
version, using wildcards. This kind of build used to fail accourding the issue 83 from

20

github.

The above means to execute on the same project several executions of maven calls. This breaks at
the moment the idea of separation of the builds by method.

This might be expressed by using @MavenProject annotation which defines such thing. The name of
the method can be a sub directory which contains mvn-stdout.log etc.

NOTE We should make the @MavenRepository part of @MavenProject.

ITSETITjava

@TestMethodOrder(OrderAnnotation.class)
@MavenJupiterExtension
class setVersionIT {

@Nested

@MavenRepository

@MavenProject("set_001") //Define the project to be used. Only valid on Nested class
or root class.

@DisplayName("Test the set mojo when the new version is the same as the old version,
using wildcards. This kind of build used to fail accourding the issue 83 from github.
)

class Set001 {

@MavenOption("-N")

@MavenGoal("${project.groupId}:${project.artifactId}:${project.version}:set")

@SystemProperty(value = "newVersion", content = "2.0")

@MavenTest

@0rder(10)

void first_test(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}

@MavenOption("-N")

@MavenGoal("${project. groupId} ${project.artifactId}:${project.version}:set")

@SystemProperty(value = "newVersion", content = "2.0")

@SystemProperty(value = "groupId", content = "*")

@SystemProperty(value = "artifactId", content = "*")

@SystemProperty(value = "oldVersion", content = "*")

@MavenTest

@0rder(20)

@DisplayName("where setup two is needed.")

void second_test(MavenExecutionResult result) {
assertThat(result).isFailure();

}

21

5.2.4. Test Case UPDATE-CHILD-MODULES-001
Think about the following:

invoker.properties

first check that the root project builds ok
invoker.goals.1=-0 validate
invoker.nonRecursive.1=true
invoker.buildResult.1=success

second check that adding the child project into the mix breaks things
invoker.goals.2=-0 validate

invoker.nonRecursive.2=false

invoker.buildResult.2=failure

third fix the build with our plugin
invoker.goals.3=${project.groupId}:${project.artifactId}:${project.version}:update-
child-modules

invoker.nonRecursive.3=true

invoker.buildResult.3=success

forth, confirm that the build is fixed
invoker.goals.4=validate
invoker.nonRecursive.4=false
invoker.buildResult.4=success

This could be translated into the following:

UpdateChildModuleIT.java

(OrderAnnotation.class)

class UpdateChildModuleIT {

("name-x") //Define the project to be used.
class One {
(options = {"-0"}, goals = { "validate" })
(10)
void first_test(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}

(options = {"-0"}, goals = { "validate" })
(20)
("where setup two is needed.")
void second _test(MavenExecutionResult result) {
assertThat(result).isFailure();

}

22

(options = {"-N"}, goals = {
"${project.groupId}:${project.artifactId}:${project.version}:update-child-modules" })
(30)
("where setup two is needed.")
void third_test(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}

(goals = { "validate" })
(10)

void forth_test(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}

6. Log Assertion

We have at the moment at least three different outputs:

1. The stdout as mvn-stdout.log
2. The stderr as mvn-stderr.log

3. The list of used command line parameters mvn-arguments.log

filename.java

assertThat(result).isSuccessful().out()...
assertThat(result).out().warn()

7. Ideas

7.1. IDE Integration

» If we change the code of a plugin within the IDE the Integration test will not test against the
changed code only against the latest built jar files. The IDE compiles the changes code into
target/classes... something about the classpath?

» Tricky idea: If we start an integration test we could check if the class files are newer than the
created jar file and build via mvn package the project under test and copy them into the
appropriate directories and then run the test as usual.

¢ Assertion Idea

assertThat(result)

23

.project()
.hasTarget()
.withEarFile()
.containsOnlyOnce("META-INF/MANIFEST.MF");

assertThat(result)
.project()
.1og()
.info().contains("Writing data to file");

assertThat(result)
.cache()
.hasEarFile("G:A:V")
.hasPomFile("G:A:V")
.hasMetadata("G:A")
.contains("xxx");

7.2. Test Execution

When should tests being executed?

* If the test has been changed? Yes
o If the SUT (Plugin/Extension) has been changed? Yes
* How can we identify if something has been changed?

o What should be taken into consideration?

Can we calculate a checksum or alike? over a larger number of files?

8. Annotations / Repeatable Annotations

Based on the ideas in https://github.com/khmarbaise/maven-it-extension/issues/135 we have to
reconsider annotation based setup for goals, profiles, options and system properties etc.

Create separate annotations like the following:

* @MavenGoal (make it repeatable @MavenGoals)
* @MavenProfile (make it repeatable @MavenProfiles)
* @MavenOption (make it repeatable @MavenOptions)

» @SystemProperty (make it repeatable @SystemProperties)

8.1. Example Test case

An example test (based on release 0.8.0):

The following IT means to execute each integration test case with the goal package.

24

https://github.com/khmarbaise/maven-it-extension/issues/135

The following assumptions (based on release 0.8.0) where made:

» --error option will be added by default issue-134.

 package The life cycle phase is default (currently define by @MavenJupiterExtension)

class AnIT {

void basic_one(MavenExecutionResult result)
throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)
throws IOException {

8.1.1. Changing Default Goal

In this case the given @MavenGoal will automatically replace the default goal package as defined in
@MavenJupiterExtension with the given goal verify in the given case. Based on the position of the
@MavenGoal annotation this means all consecutive test methods will inherit the given goal.

We have not defined a profile by default nor a system property.

("verify")
class AnIT {

void basic_one(MavenExecutionResult result)
throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)

25

https://github.com/khmarbaise/maven-it-extension/issues/134

throws IOException {

We can change the globally defined goal on a test case base: The following setup will result in
executing:

* basic_one with goal package

* basic_three with goal package
as defined by the @MavenGoal defined on the class level.

* basic_two with goal install instead of package

@MavenJupiterExtension
@MavenGoal("verify")
class AnIT {

@MavenTest
void basic_one(MavenExecutionResult result)
throws IOException {

}

@MavenTest

@MavenGoal("install")

void basic_two(MavenExecutionResult result)
throws IOException {

}

@MavenTest
void basic_three(MavenExecutionResult result)
throws IOException {

We can now combine several MavenGoal definitions. The result will be having executed the goal
clean and verify for each test case basic_one, basic_two and basic_three.

@MavenJupiterExtension
@MavenGoal("clean")
@MavenGoal("verify")
class AnIT {

@MavenTest

26

void basic_one(MavenExecutionResult result)
throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)
throws IOException {

Based on the opportunity to create meta annotations we can now change the example like this:

The @MavenCleanVerify is a meta annotation defined like this:

({ ElementType.TYPE })
(RetentionPolicy.RUNTIME)
("clean")
("verify")
public MavenCleanVerify {

Based on the possibility to define JUnit Jupiter annotations on an interface you can define an
interface like CleanVerify and implement the interface in all your integration tests which makes it
very easy to define a global definition of the goals you like to execute.

class AnIT {

void basic_one(MavenExecutionResult result)
throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)

27

throws IOException {

8.1.2. Changing Default Options

By defining the MavenOption annotation you can replace the default option --error very easily
(Defined in @MavenJupiterExtension). Here we have the same mechanism as already shown for the
@MavenGoal including meta annotations etc. It is important that the MavenOption could have
parameters for particular options like --projects or --settings xyz.xml for example.

(option
(option
class AnIT {

MavenOptions.DEBUG)
MavenOptions.FAIL_AT_END)

void basic_one(MavenExecutionResult result)
throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)
throws IOException {

You can overwrite options for particular test cases like this: The basic_three will be executed by
using the only options defined via MavenOption.

(DEBUG)
(FAIL_AT _END)
class AnIT {

void basic_one(MavenExecutionResult result)
throws IOException {

28

void basic_two(MavenExecutionResult result)
throws IOException {

(DEBUG)
(FAIL_AT_END)
(value = PROJECTS, parameters="m1,m2")
void basic_three(MavenExecutionResult result)
throws IOException {

8.1.3. Defining Profiles

By defining the @MavenProfile annotation like the following you can define a single profile:

("run-its")
class AnIT {

void basic_one(MavenExecutionResult result)
throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)
throws IOException {

You can combine a number of annotations like this to activate more than one profile:

("run-its")

29

("run-e2e")
class AnIT {

void basic_one(MavenExecutionResult result)
throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)
throws IOException {

8.1.4. Defining System Properties

By defining the SystemProperty annotation like the following you can define a single property:

("skipTests")
class AnIT {

void basic_one(MavenExecutionResult result)

throws IOException {

}

void basic_two(MavenExecutionResult result)
throws IOException {

}

void basic_three(MavenExecutionResult result)
throws IOException {

The above means to put the system property on each execution in this case on basic_one, basic_two
and basic_three.

30

You can define a system property like the following which includes the definition of the value:

@SystemProperty(name = "rat.ignoreErrors", value="true")

@SystemProperty(name = "newVersion", value="2.0")
@SystemProperty(name = "groupId", value="*")
@SystemProperty(name = "artifactId", value="*")
@SystemProperty(name = "oldVersion", value="*")

The following test case defines on the root of the test class a single system property. The methods
basic_one defines a supplemental system property. This means that basic_one will be executed with
two system properties being set and basic_two as well (different ones) and finally basic_three will
have three system properties set.

@MavenJupiterExtension
@SystemProperty(name = "newVersion", value="2.0")
class AnIT {

@MavenTest

@SystemProperty(name = "groupId", value = "*")

void basic_one(MavenExecutionResult result)
throws IOException {

}
@MavenTest

@SystemProperty(name = "artifactId", value = "*")
void basic_two(MavenExecutionResult result)
throws IOException {

}
@MavenTest

@SystemProperty(name = "groupId", value = "*")

@SystemProperty(name = "artifactId", value = "*")

void basic_three(MavenExecutionResult result)
throws IOException {

8.1.5. Real Test Case

The following is a real test which works (realized with ITF Release 0.8.0):

@MavenJupiterExtension
class CompareDependenciesIT

31

private static final String VERSIONS_PLUGIN =
"${project.groupIld}:${project.artifactId}:${project.version}";

@MavenTest(options = {MavenOptions.SETTINGS, "settings.xml"}, goals=
{VERSIONS_PLUGIN + ":compare-dependencies"},
systemProperties = {"remotePom=1ocalhost:dummy-bom-pom:1.0",
"reportOutputFile=target/depDiffs.txt"})
void it_compare_dependencies_001(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)
{
assertThat(result).isSuccessful()
.project()
.hasTarget()
withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nn
I

org.apache.maven:maven-artifactcovotn 2.0.10 ->

2.0.9",

nn
I

"The following property differences were found:",

nn
I

none"));

}

@MavenTest(goals = {VERSIONS_PLUGIN + ":compare-dependencies"},
systemProperties = {"remotePom=1ocalhost:dummy-bom-pom:1.0",
"reportMode=false", "updatePropertyVersions=true"})
void it_compare_dependencies_002(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)
{
assertThat(result).isSuccessful()
.project()
.hasTarget()
.withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nn
I

org.apache.maven:maven-artifact 2.0.10 ->

2.0.9",

nn
I

"The following property differences were found:",

nn
I

n noneu));

}
@MavenTest(goals = {VERSIONS_PLUGIN + ":compare-dependencies"},
systemProperties = {"remotePom=1ocalhost:dummy-bom-maven-mismatch:1.0
, "reportMode=false", "updatePropertyVersions=true"})

32

void it_

{

compare_dependencies_003(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)

assertThat(result).isSuccessful()

2.0.9",

}

.project()
.hasTarget()
.withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nn
I
n

"The following property differences were found:",

none"));

@MavenTest(goals = {VERSIONS_PLUGIN + ":compare-dependencies"},

systemProperties = {
"remotePom=1ocalhost:dummy-bom-pom:1.0",
"reportMode=true",
"reportOutputFile=target/depDiffs.txt",
"updatePropertyVersions=true"})

org.apache.maven:maven-artifact

void it_compare_dependencies_004(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)

{

assertThat(result).isSuccessful()

2.0.10 -> 2.

4.8 -> 4.1",

4.8 -> 4.1"
}

.project()
.hasTarget()
.withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nmn
I
n

0.9",
founitiunit
"The following property differences were found:",
b JUNTELVErSTON vt e
))i

@MavenTest(goals = {VERSIONS_PLUGIN + ":compare-dependencies"},

systemProperties = {
"remotePom=1ocalhost:dummy-bom-pom:1.0",
"reportMode=true",
"reportOutputFile=target/depDiffs.txt",
"updatePropertyVersions=true"})

org.apache.maven:maven-artifact

33

void it_compare_dependencies_005(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)
{
assertThat(result).isSuccessful()
.project()
.hasTarget()
.withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nn
I

" org.apache.maven:maven-artifactt. 2.0.10 ->
2.0.9",

nn
I

"The following property differences were found:",

nmn
I

" none"));

Based on the presented ideas before it could look like that:

@MavenJupiterExtension
@MavenGoal("${project.groupIld}:${project.artifactId}:${project.version}:comopare-
dependencies")

@SystemProperty(name="remotePom", value="localhost:dummy-bom-pom:1.0")

class CompareDependenciesIT

{

@MavenTest
@SystemProperty(name = "reportOutputFile", value="target/depDiffs.txt")
@MavenOption(name = MavenOptions.SETTINGS, value = "settings.xml")
void it_compare_dependencies_001(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)
{
assertThat(result).isSuccessful()
.project()
.hasTarget()
.withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nn
I

org.apache.maven:maven-artifact 2.0.10 ->

2.0.9",

nn
I

"The following property differences were found:",

nn
I

none"));

n

34

@MavenTest

@SystemProperty(name = "reportMode", value="false")

@SystemProperty(name = "updatePropertyVersions", value="true")

void it_compare_dependencies_002(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)

{

assertThat(result).isSuccessful()
.project()
.hasTarget()
.withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nn
I

org.apache.maven:maven-artifact 2.0.10 ->

2.0.9",

nn
I

"The following property differences were found:",

nn
I

none"));

}

@MavenTest

@SystemProperty(name = "remotePom", value="localhost:dummy-bom-maven-mismatch:1.0
") //OVERWRITE ??? Replace?

@SystemProperty(name = "reportMode", value="false")

@SystemProperty(name = "updatePropertyVersions", value="true")

void it_compare_dependencies_003(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)

{
assertThat(result).isSuccessful()
.project()
.hasTarget()
.withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",
" org.apache.maven:maven-artifactoiitt. 2.0.10 ->
2.0.9",
"The following property differences were found:",
n noneu));
}
@MavenTest
@SystemProperty(name = "reportMode", value="true")
@SystemProperty(name = "reportOutputFile", value="target/depDiffs.txt")

@SystemProperty(name = "updatePropertyVersions", value="true")
void it_compare_dependencies_004(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)

35

assertThat(result).isSuccessful()
.project()
.hasTarget()
withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nmn
I

" org.apache.maven:maven-artifactt
2.0.10 -> 2.0.9",

JUNTEIJUNTE o
4.8 -> 4.1",

nmn
I

"The following property differences were found:",

nmn
I

00 =T T

n

4.8 ->4.1"));

}

@MavenTest

@SystemProperty(name = "reportMode", value="true")

@SystemProperty(name = "reportOutputFile", value="target/depDiffs.txt")

@SystemProperty(name = "updatePropertyVersions", value="true")
void it_compare_dependencies_005(MavenExecutionResult result, MavenProjectResult
mavenProjectResult)
{
assertThat(result).isSuccessful()
.project()
.hasTarget()
withFile("depDiffs.txt")
.hasContent(String.join("\n",
"The following differences were found:",

nn
I

org.apache.maven:maven-artifactt. 2.0.10 ->

2.0.9",

nn
I

"The following property differences were found:",

nn
I

none"));

8.2. Rule for Nested Classes

What should be the rules for nested classes in IT’s? Inheriting ? Replace system properties based on
the name with the new value?

36

8.3. Ideas

We could try to define @MavenGoal on a package level (within package-info.java?). Currently JUnit
Jupiter does not support to define annotations on package level.

8.4. Implementation Steps

Steps to move forward:
* Mark goal in MavenJupiterExtension deprecated with release 0.9.0 and remove it with release
0.10.0

* Mark goals, activeProfiles, options, systemProperties and debug in MavenTest deprecated (release
0.9.0) and remove with release 0.10.0.

« Starting with Release 0.10.0
o The package will only used if no @MavenGoal is defined at all.

o The --error option will only used if no MavenOption is defined at all.

9. Configuration / Resources-its

9.1. Current State

Based on the current implementation you have to configure the resources-its as a resource which
needs to be filtered to replace placeholders in pom.xml files via the following pom.xml file snippet:

<testResources>
<testResource>
<directory>src/test/resources</directory>
<filtering>false</filtering>
</testResource>
<!--
I Currently those tests do need to be filtered.
-->
<testResource>
<directory>src/test/resources-its</directory>
<filtering>true</filtering>
</testResource>
</testResources>

The current setup has a number of disadvantages:

» Everything is copied and filtered
o Filtering of binary files and other files which shouldn’t being filtered at all.
* To make it correctly very inconvenient for the user.

» Usage of a Git/SVN/Hg/Bzr repositories for a test setup is more or less impossible based on

37

default configurations of maven-resources-plugin.
To make the setup correctly you have to do it like this:

* Define a large list of non filtered extensions like jar, war, zip etc.

* Define only a single delimiter @project.version@ instead of the default which contains also @{..}
which could be mistaken with other information within the test case(s).

* Furthermore, you might need to turn off <addDefaultExcludes>false</addDefaultExcludes>.

9.2. Change it

We should enhance the itf-maven-plugin accordingly to handle the coping and filtering.
Advantages:

e Much easier for the user.

o The whole configuration can be done within the itf-maven-pugin with better defaults than
manually setting up.

- This removes the need to configure resources separately and filtering.
- Separation of concern.
* We can also analyse the content and make some checks for later caching (future)

o For example could calculate hashes (like SHA-2567) to detect if changes have been made to
the projects or not.

10. Injections

10.1. MavenProjectResult, MavenProject, Model

Based on the current implementation it is possible to inject the information about the directory
structure into the beforeEach Method as well as the test method like this:

void beforeEach(MavenProjectResult project) {

}

void testCase(MavenExecutionResult result, MavenProjectResult mavenProjectResult) {

Basically we have implemented the MavenProjectResult in the way to contain information about the
target directory structures like this:

38

target/maven-it/

Lo /FirstIT
+--- test_case_one <-- targetBaseDirectory
+--- .m2/ <-- targetCacheDirectory
+--- project <-- targetProjectDirectory

vees EFE/

+--- pom.xml <-- model (targetModel)
+--- mvn-stdout.log
+--- mvn-stderr.log

Taking a deeper look into the use cases in particular for beforeEach it becomes clear that the naming
is misleading furthermore the MavenProjectResult contains different things than directories for
example a Model. Further more the whole directory structure which is from the source area is
completely missing:

src/test/java/../
+--- FirstIT.java

+--- test_case_one <--- sourceBaseDirectory
src/test/resources-its/.../
+--- FirstIT/
+--- .predefined-repo <--- sourceRepo (optional)
+--- test_case_one <--- sourceProjectDirectory
C=e= TR

+--- pom.xml <--- sourceModel

Let us think about a different naming/structures:

* MavenTarget
> baseDirectory, cacheDirectory, projectDirectory
* MavenSource

- baseDirectory, projectDirectory, repository (optional)
The model information should be handled in two different ways:

* MavenModelTarget
o model (targetModel)
* MavenModelSource

o model (sourceModel)

This means also we can make the injection optional in cases where we might no Model (pom.xml)
files at all.

Based on the above a IT case could look like this:

39

void beforeEach(MavenSource source, MavenTarget target, MavenModelSource modelSource,
MavenModelTarget modelTarget) {

}

void testCase(MavenTarget mavenTarget) {

This means that within the beforeEach method you could access the state of the IT before the
execution of Maven can be access or done something special.

11. Open Things

Things which currently not working or net yet tested/thought about

O A build/tool(s) running without relation to Maven? This means we only need to define what we
start simply a different thing than Maven. Would we like to support this?

O POM Less builds currently not tried. Calling only a goal like site:stage ?
O Setup projects which should be run

O General Setup repositories which already contain particular dependencies which are needed
for test cases. Here we need to make it possible having a local repository to be pre defined on a
test case or on a more general way.

O Support for a mock repository manager (mrm) to make tests cases with deploy/releases etc.
possible. A thought might be to integrate the functionality of mrm into this extension and
somehow configure that for the test cases?

O Support for Mock Repository Manager

40

https://www.mojohaus.org/mrm/index.html

	Integration Testing Framework Concept Guide
	Table of Contents
	1. What is this?
	2. Overview
	3. Structuring Integration Tests
	3.1. The Test Class(es)
	3.2. Test Case Execution
	3.3. Parallelization

	4. Ideas
	4.1. Separation of the cache (aka Local Maven Repository)
	4.2. Mock Repository Manager
	4.3. Setup Projects
	4.4. General Setup Repositories
	4.5. General Setup Repositories incl. Snapshots

	5. Real Life Examples
	5.1. Maven Assembly plugin
	5.2. Versions Maven Plugin

	6. Log Assertion
	7. Ideas
	7.1. IDE Integration
	7.2. Test Execution

	8. Annotations / Repeatable Annotations
	8.1. Example Test case
	8.2. Rule for Nested Classes
	8.3. Ideas
	8.4. Implementation Steps

	9. Configuration / Resources-its
	9.1. Current State
	9.2. Change it

	10. Injections
	10.1. MavenProjectResult, MavenProject, Model

	11. Open Things

