Table of Contents

. Overview of the Current Situation

Y U1 W

1. Overview of the Current Situation

We will use some terms in this document:

1.1. Maven Invoker Plugin

In Maven Invoker Plugin the following issues exist:

Integration Testing Framework
Background Guide

1.1. Maven Invoker Plugin

1.2. Maven Verifier Plugin

1.3. Maven Verifier Component
1.4. Maven Plugin Testing Harness
1.5. Mock Repository Manager

1.6. Why not Spock?

1.7. Conclusion

. Basic Idea

. Concept

. Example

. Execution of Maven itself

. Parameter Injection

6.1. MavenExecutionResult

6.2. Run Conditionally Integration Tests
. Assertions in Maven Tests

7.1. Target Directory Handling
7.2. New Ideas

7.3. Things which do not work yet (not complete!)
. TODO List
8.1. Support for running with several Maven Versions

. Comparison

* The word cache will be used for the local repository ($HOME/.m2/repository).

Gl U1 W W W NN =

S T N " S S G WA
o U1 Ul Ul R W DN R, O O O

 Parallelizing does not work and is not easy to integrate based on current concept and code base.

o Apart from being implemented it would hard to express the prevention of parallel execution

https://maven.apache.org/plugins/maven-invoker-plugin

in some situations.
» Separating caches for each build is hard to implement

* Get a common cache for a set of integration tests is even harder.

A Concept like BeforeEach or BeforeAll is current not really possible.
o The concept with setup project is not correctly working at the moment.
* Writing integration tests forces one to write in Groovy or Beanshell.

o This means to enhance the number of dependencies. In days of Java 5 until 7 it had been an
advantage to use Groovy with it’s supports for closures etc. which made it simpler and
easier to write things for integration tests, but since JDK 8 it is not necessary anymore.

Integrationtest are not that expressive as they should be.

Violation of separation of concern paradigm
o Conditions

= Assertions are hard to express cause one implicit assertion is that a build has to be
successful (can be changed if necessary)

= Conditions for the execution of a test for example are:
= should be executed only on JDK11
= should be executed only on Maven 3.3.9 and above
= Several other conditions

= are expressed within a single file invoker.properties.

1.2. Maven Verifier Plugin

The Maven Verifier Plugin is intended to write tests to check for the existence of files or the absence
of files but in the end it is very limited.

The Maven Verifier is intended to write integration tests for Maven ...

1.3. Maven Verifier Component

The Maven Verifier is intended to write a kind of tests:

* You can set the command line parameters for an executed instance of Maven like -s, -X etc.
* Execute goals like package or alike.

It contains some methods like assertFilePresent, assertFileMatches, verifyArtifactPresence etc.
but not a comprehensive set of methods.

» Some parts are like Maven Invoker Plugin for example starting an external process with Maven
(something like starting Maven on command line.).

¢ Is JUnit 3 based.

* Manually maintained TestSuite to execute all integration tests of Maven Core.

https://en.wikipedia.org/wiki/Separation_of_concerns
https://maven.apache.org/plugins/maven-invoker-plugin/integration-test-mojo.html#invokerPropertiesFile
https://maven.apache.org/plugins/maven-verifier-plugin/
https://maven.apache.org/shared/maven-verifier/
https://maven.apache.org/shared/maven-verifier/
https://github.com/apache/maven-integration-testing/blob/master/core-it-suite/src/test/java/org/apache/maven/it/IntegrationTestSuite.java

» Each Testcase must be expressed by a separate Test class.
* Manually implemented conditionally execution.

* Conditions for execution only based on a self implemented constructor part which defines the
Maven version under which it should run or not.

1.4. Maven Plugin Testing Harness

The Maven Plugin Testing Harnessis intended to write tests for using parameters correctly and
several other setup situations but the test setup is separated into a unit test like part in code and a
part which is pom like

 It’s bound to versions of Maven core which might caused issues during testing with other
versions of Maven.

* https://maven.apache.org/plugin-testing/maven-plugin-testing-harness/getting-started/
index.html

* Also, JUnit 4 based.

1.5. Mock Repository Manager

Currently, it’s only possible to have a single instance of the mock repository manager running
which is based on the limited concept because we need to define it in the pom.xml. Of course, we
could start two or more instances but this would make the setup more or less unreadable.

1.6. Why not Spock?

So you might ask why not using Spock or any other testing framework for such purposes? Let me
summarize the different aspects I had in mind:

* People often tend to write Java code (which is valid), cause they don’t know Groovy or don’t
want to learn a new language just to write tests. This means in the end: Why Groovy? Just use
Java.

* It’s much easier for new contributors/devs to get into the project if you only need to know Java
to write plugins, unit tests and integration tests. So removing a supplemental barrier will help.

* Support for most recent Java versions which is a complete blocker for the Apache Maven
project, cause the Apache Maven Project is running builds in a very early stage (Early access)
which would block us (see our builds for example Apache Maven EAR Plugin Builds). Currently
spock is not yet tested/build against JDK11+ ? So having a Testing framework which might not
work on most recent versions is a complete blocker.

* In earlier days I would have argued to use Spock based on the language features but since JDK8
I don’t see any advantage in using Groovy over Java anymore.

» Spock does not support parallelizing of tests (full blocker for me)

* Good IDE Support for Groovy is at the moment only given in IDEA Intelli] as well as for DSL
support for Spock. That would block many people. This blocker based on the usage of a
particular IDE is not acceptable for an open source project like the Apache Maven Project and

https://github.com/apache/maven-integration-testing/blob/master/core-it-suite/src/test/java/org/apache/maven/it/MavenIT0090EnvVarInterpolationTest.java
https://github.com/apache/maven-integration-testing/blob/master/core-it-suite/src/test/java/org/apache/maven/it/MavenITmng6391PrintVersionTest.java
https://maven.apache.org/plugin-testing/maven-plugin-testing-harness/index.html
https://maven.apache.org/plugin-testing/maven-plugin-testing-harness/getting-started/index.html
https://maven.apache.org/plugin-testing/maven-plugin-testing-harness/getting-started/index.html
https://builds.apache.org/view/M-R/view/Maven/job/maven-box/job/maven-ear-plugin/job/master/

from my point of view as an Apache Maven PMC member this is simply a no go.

1.7. Conclusion

It is needed to have a combination of Maven Invoker Plugin, Maven Verifier etc. into a single
Testing framework which should make it possible to make integration tests easier to write and
make them more expressive about what the intention of what a test exactly is.

It looks like a good solution to use existing frameworks like JUnit Jupiter and assertions like Assert]
library to express what it’s needed. This in result will give automatically many advantages for
example the integration into the IDE as well as writing the tests in Java code and furthermore
opens easy ways to use existing Java libraries.

Using JUnit Jupiter as base will solve lot of things which are already supported by JUnit Jupiter like
conditional execution of Tests based on JRE or possible deactivation based on properties etc.

Based on Assert] it could be easy to express the assertions for test results in many ways and can
also being enhanced by writing custom assertions.

2. Basic Idea

The expressiveness of tests is a very important part of writing integration tests or test in general. If
a test is not easy to understand it is very likely not being written.

Let us take a look into the following code snippet which is an idea how an integration test for a
Maven Plugins/Maven Extensions/Maven-Core could look like:

import static org.assertj.core.api.Assertions.assertThat;

import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenTest;
import org.apache.maven.jupiter.extension.maven.MavenProjectResult;

class FirstMavenIT {

void the_first_test_case(MavenProjectResult result) {
assertThat(result)
.build()
.isSuccessful()
.and()
.project()
.hasTarget()
.withEarFile()
.containsOnlyOnce("META-INF/MANIFEST.MF")
.log()
.info().contains("Writing data to file")
.cache()

https://maven.apache.org/plugins/maven-invoker-plugin
https://junit.org/junit5/
https://assertj.github.io/doc/
https://junit.org/junit5/
https://junit.org/junit5/
https://assertj.github.io/doc/
https://maven.apache.org/plugins/

.withEarFile("G:A:V")
.withPomFile("G:A:V")
.withMetadata().contains("xxx");

3. Concept

The idea was to create an JUnit Jupiter extension which will support writing of integration tests for
Maven plugins etc. in a convenient way. Furthermore writing custom assertions with Assert] library
makes it easier to express the intention of a test.

Basic Idea is currently similar to maven-invoker-plugin: Another option would be to combine this
with Docker containers which run Maven. Extension starts the appropriate Maven version via
ProcessBuilder with parameters in it’s own directory (target/maven-it/)

* Separate

» Existing repository which contains already installed artifacts for special cases (see Versions
Maven Plugin a lot of test cases need special artifacts in repository for integration tests). Using a
directory default: local-repo. ?

4. Example

The following integration test is a basic skeleton of an integration test which implies some
conventions which will be describe within the following paragraphs.

FirstITjava

package org.it;

import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenTest;

import org.apache.maven.jupiter.extension.maven.MavenExecutionResult;

class FirstIT {

void first(MavenExecutionResult result) {

}

void second(MavenExecutionResult result) {

}
}

The directory structure of an integration test will look like this. This is by convention the same as
for any kind of unit- or integration-test in Maven or more in general in Java projects.

https://junit.org/junit5/docs/current/user-guide/#extensions
https://assertj.github.io/doc/
https://github.com/mojohaus/versions-maven-plugin
https://github.com/mojohaus/versions-maven-plugin

src
+-- test
+-- java
+-- org
+-- it
+-- FirstIT.java

The convention is simply by mapping the method name (including the package name) into a
directory. The resources directory is the location where to find the project for the integration tests.
Basic start is the class name FirstIT which defines the base directory for all test cases.

In Ma The intermediate directory maven-its is intended to separate the usual resources from the
integration test resources.

src
+-- test
+-- resources
+-- maven-its
+-- org
+-- it
+-- FirstIT

Now we have the need to separate each test case from each other which is done via the method
name of the test case within the test class FirstIT which has the methods first and second in our
examples. This will look like the following:

src
+-- test
+-- resources
+-- maven-its

+-- org
+-- it
+-- FirstIT

+- first
+- Src
+- pom.xml

+- second
+- Src
+- pom.xml

During the execution of the integration tests the following directories will be created within the
target directory:

target
+- maven-its
+- org

b= i

+- FirstIT
+- first
+- .m2/
+- project
+- mvn-stdout.log

+- mvn-stderr.log

+- other logs
+- second

+- .m2/

+- project

+- mvn-stdout.log
+- mvn-stderr.log
+- other logs

Based on the above you can see that each test case (method within the class) has it’s own local
cache (.m2/repository). You see the resulting project is built within the project folder to make
separated from log files and local cache. The result of this setup is that each test case is completely
separated from each other test case and gives us an easy way to parallelize the integration test
cases in a simple way.

It is possible to define the cache for several test cases globally which can simply being done by
using the following annotation @MavenRepository. This give the opportunity to make different tests
share the same cache which is like a usual setup for a user on a local machine which can be used to
test different scenarios. The default behaviour is that each test case has it’s own local cache
.m2/repository

One very important thing is to mention that if you define @MavenRepository as given in the following
example you have to be aware of that those test cases running by default in parallel which mean
you have to limit the thread usage via @Execution(ExecutionMode.SAME_THREAD) otherwise it could
happen you might get strange errors.

FirstMavenITjava
package org.it;

import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenRepository;

import org.apache.maven.jupiter.extension.MavenTest;

import org.apache.maven.jupiter.extension.maven.MavenExecutionResult;
import org.junit.jupiter.api.parallel.Execution;

import org.junit.jupiter.api.parallel.ExecutionMode;

(ExecutionMode.SAME _THREAD)
class FirstIT {

void first(MavenExecutionResult result) {

void second(MavenExecutionResult result) {

}
}

Sometimes it could be useful to setup a number of project together to test things related to usage of
other other artifacts or other projects etc. this can be achieved by using the following setup:

MavenlIntegrationITjava

package org.it;

import static org.

import
import
import
import
import
import
import

}

}

org.
.apache.
org.
.apache.
org.
org.
org.

org

org

apache.
apache.
junit.j

junit.j
junit.j

apache.maven.jupiter.assertj.MavenITAssertions.assertThat;

maven.jupiter.extension.MavenJupiterExtension;
maven.jupiter.extension.MavenRepository;
maven.jupiter.extension.MavenTest;
maven.jupiter.extension.maven.MavenExecutionResult;
upiter.api.MethodOrderer.OrderAnnotation;
upiter.api.Order;

upiter.api.TestMethodOrder;

(OrderAnnotation.class)
class MavenIntegrationIT {

("install")

(10)
void setup(MavenExecutionResult result) {
assertThat(result).isSuccessful();

("install")

(20)
void setup_2(MavenExecutionResult result) {
assertThat(result).isSuccessful();

void first_integration_test(MavenExecutionResult result) {
assertThat(result).isSuccessful();

}
}

Based on the given annotation @MavenRepository this will define a global cache for all test cases

within the given test class MavenIntegrationIT.

So based on the above test case you will get a resulting directory structure which looks like this:

target
+- maven-its
+- org
+- it
+- MavenIntegrationIT
+- .m2/
+- setup
+- project

+- mvn-stdout.log
+- mvn-stderr.log
+- other logs

+- setup_2
+- project
+- mvn-stdout.log
+- mvn-stderr.log
+- other logs

+- first_integration_test
+- project
+- mvn-stdout.log
+- mvn-stderr.log
+- other logs

There are two things to mention. First the cache which is common for all given tests cases setup,
setup_2 and for first_integration_test. Furthermore the definition of the order of execution given
by using @0rder(10) which defines the order of execution for those test cases which are used as
setup projects for the real test case first_integration_test. This makes it easy possible define any
kind of setup projects for a bigger complexer test case.

Separate repository which contains already installed artifacts local-repo:
Think how to make the build use it?
src
+-- test

+-- resources
+-- maven-its

+-- org
t== i
+-- FirstIT

+- .local-repo

+- first
+- src
+- pom.xml

+- second
+- src

+- pom.xml

5. Execution of Maven itself

* How to get the Maven version which is defined?
o Define within the same pom file you run your tests?
> Ok could be downloaded from Central?
> how to handle repository managers?

* Where to get configured all the avialble Maven versions? On the system? or should we simply
download it always to be sure?

6. Parameter Injection

Possible options:

* Information about the built project
o version, GAV etc. maybe the whole POM tree ?
o think more in details?
* Logging output
o Stdout
o StdErr
> Log Output as Stream or after finished running
o Convenience methods to get information from the log
» isInfo() which relates to [INFO] .. Think about this?
= Some things to get output from plugins etc.???
* Access to the cache directory
- With convenience methods to access artifacts/content of artifacts
o 277

* general build result.

6.1. MavenExecutionResult

 MavenExecutionResult
o isSuccessful() BUILD SUCCESS
o isError() [ERROR]::".

o is

10

ThirdMavenITjava
class FirstMavenIT {

void first_test case(MavenExecutionResult execResult) {
assertThat(execResult).isSuccessful();

}

void second_test _case(MavenExecutionResult execResult) {
assertThat(execResult).isFailed();

}

6.2. Run Conditionally Integration Tests

You might want to run an integration test only for a particular Maven version for example running
only for Maven 3.6.0?

ForthMavenIT.java

import static org.apache.maven.jupiter.assertj.MavenExecutionResultAssert.assertThat;
import static org.apache.maven.jupiter.extension.maven.MavenVersion.M3_0_5;
import static org.apache.maven.jupiter.extension.maven.MavenVersion.M3_6_0;

import org.apache.maven.jupiter.extension.DisabledForMavenVersion;
import org.apache.maven.jupiter.extension.EnabledForMavenVersion;
import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenTest;

import org.apache.maven.jupiter.extension.maven.MavenExecutionResult;

class FirstMavenIT {

(M3_6_0)
void first_test _case(MavenExecutionResult execResult) {
assertThat(execResult).isSuccessful();

}
(M3_0_5)

void second_test case(MavenExecutionResult execResult) {
assertThat(execResult).isFailure();

}

11

So not run some tests on particular Java version can be handled via usual JUnit Jupiter things like:

FivthMavenITjava

import static org.apache.maven.jupiter.assertj.MavenITAssertions.assertThat;
import static org.apache.maven.jupiter.extension.maven.MavenVersion.M3_0_5;
import static org.apache.maven.jupiter.extension.maven.MavenVersion.M3_6_0;

import org.apache.maven.jupiter.extension.DisabledForMavenVersion;
import org.apache.maven.jupiter.extension.EnabledForMavenVersion;
import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenTest;

import org.apache.maven.jupiter.extension.maven.MavenExecutionResult;
import org.junit.jupiter.api.condition.DisabledOnJre;

import org.junit.jupiter.api.condition.JRE;

(JRE.JAVA_10)
class FirstMavenIT {

(M3_6_0)
void first_test case(MavenExecutionResult execResult) {
assertThat(execResult).isSuccessful();

}
(M3_0_5)

void second _test case(MavenExecutionResult execResult) {
assertThat(execResult).isFailure();
}
}

7. Assertions in Maven Tests

What kind of assertions do we need to express:

* Build itself has successfully ended or failed. (Return code? enough?)
* Log File contains several information
o Different levels INFO, WARN or ERROR..
= contains simply one or more lines text
= contains only once or multiple appearance of texts
» StdErr output contains particular output or should not contain particular output.
» The target directory of the built project contains either:
o particular files

= simply exist/do not exist?

12

= should exist or should not exist

= The files contain particular content? for example or in general directory within the file
MANIFEST.MF.

= A packaged file special content?

o directories

o ??
SixthMavenIT java
import static org.apache.maven.jupiter.assertj.MavenExecutionResultAssert.assertThat;

import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenTest;
import org.apache.maven.jupiter.extension.maven.MavenExecutionResult;

class FirstMavenIT {

void first_test case(MavenExecutionResult execResult) {
assertThat(execResult).isSuccessful();

}

void second test case(MavenExecutionResult result) {

assertThat(result).isFailed().log().contains().plugin("G:A:V");
assertThat(result)

.isSuccessful()

.and()

.project("G:A:V")

.module("G:A:V")
hasTarget().withJarFile().metainf

7.1. Target Directory Handling

SeventhMavenITjava
import static org.apache.maven.jupiter.assertj.MavenProjectResultAssert.assertThat;
import org.apache.maven.jupiter.extension.MavenJupiterExtension;

import org.apache.maven.jupiter.extension.MavenTest;
import org.apache.maven.jupiter.extension.maven.MavenProjectResult;

class FirstMavenIT {

13

void second_test_case(MavenProjectResult project) {
assertThat(project).hasTarget()
.withEarFile()
.containsOnlyOnce(
"META-INF/application.xml",
"META-INF/appserver-application.xml"

)

void third_test_case(MavenProjectResult project) {
assertThat(project).hasTarget()

.withEarFile()

.doesNotContain("commons-io-1.4.jar")

.containsOnlyOnce(
"commons-1lang-commons-1lang-2.5.jar",
"META-INF/application.xml",
"META-INF/MANIFEST.MF"

)

7.2. New Ideas

The basic idea is to have the assertions based on an entry point which is MavenExecutionResultAssert
related to MavenExecutionResult.

The following are example how an integration test could look like:

UnknownMavenITjava
import static org.apache.maven.jupiter.assertj.MavenProjectResultAssert.assertThat;

import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenTest;
import org.apache.maven.jupiter.extension.maven.MavenProjectResult;

class FirstMavenIT {

void third_test_case(MavenProjectResult project) {
assertThat(project)

.hasCache()
.withEarFile("G:A:V").containsOnlyOnce("...")
withJarFile("...").contains("..")
.withPomFile("g:a:v:c").containsDependency("xxx")
.withArchive(".tar.gz").contains("...");

assertThat(project).log().contains("...")

14

assertThat(project).hasModule("A:G").hasTarget().withEarFile()....
assertThat(project).build().isSuccessful().hasTarget()

}
}

7.3. Things which do not work yet (not complete!)

Later we will create an plugin for the purpose an can inject the information into the test cases as
we already did like in Maven Invoker Plugin.

This is:

* Currently it is not possible to define the version Maven only within the test case. Unfortunately
we have to define it in the Maven pom which is used to download the needed package from
Central.

8. TODO List

8.1. Support for running with several Maven Versions
* Currently we are limited to run under the Maven version which is used by running the
integration tests.

* We need to consider where we ran tests with different versions of Maven to check compatibility
for things. Something like this:

* Based on the above requirements the following question will arise:
o Where to download the appropriate Apache Maven versions?

- Handle each test case separately into a separate directory to keep them independent.
MultiVersionIT.java
import static org.assertj.core.api.Assertions.assertThat;
import org.apache.maven.jupiter.extension.MavenJupiterExtension;

import org.apache.maven.jupiter.extension.MavenTest;
import org.apache.maven.jupiter.extension.maven.MavenProjectResult;

({3_0_5, 3_.3.9})
class FirstMavenIT {

void third_test_case(MavenProjectResult project) {
assertThat(project)

15

https://maven.apache.org/plugins/maven-invoker-plugin

 Defining a range for Maven versions which will be used to execute the tests.

MultiVersionIT.java
import static org.assertj.core.api.Assertions.assertThat;

import org.apache.maven.jupiter.extension.MavenJupiterExtension;
import org.apache.maven.jupiter.extension.MavenTest;
import org.apache.maven.jupiter.extension.maven.MavenProjectResult;

(from = 3_0_5, upto=3_6_3)
class FirstMavenIT {

void third_test_case(MavenProjectResult project) {
assertThat(project)

9. Comparison

 Testing parallelization looks already very good. The following run is using parallel execution of
the tests:

[INFO]

[INFO] --- maven-failsafe-plugin:2.22.1:integration-test (default) @ maven-ear-plugin
[INFO]

[INFO] —---mmmmmmmmm oo e e

[INFO] TESTS

[INFO] —---mmmmmmmmm oo e

[INFO] Running org.apache.maven.plugins.ear.it.EARIT

[WARNING] Tests run: 15, Failures: @, Errors: @, Skipped: 2, Time elapsed: 21.297 s -
in org.apache.maven.plugins.ear.it.EARIT

[INFO]

[INFO] Results:

[INFO]

[WARNING] Tests run: 15, Failures: @, Errors: @, Skipped: 2

[INFO]

[INFO]

[INFO] --- maven-checkstyle-plugin:3.0.0:check (checkstyle-check) @ maven-ear-plugin
[INFO] There are 3 errors reported by Checkstyle 6.18 with config/maven_checks.xml
ruleset.

16

[INFO] Ignored 3 errors, @ violation remaining.

[INFO]

[INFO] --- maven-failsafe-plugin:2.22.1:verify (default) @ maven-ear-plugin ---
R B
[INFO] BUILD SUCCESS

[INFO] ---------mmmmmmmmmmmomooc oo
[INFO] Total time: 32.282 s

[INFO] Finished at: 2019-12-03T718:51:21+01:00

R B e

* The usual way via maven-invoker

[INFO]

[INFO] --- maven-invoker-plugin:3.2.1:integration-test (integration-test) @ maven-ear-
plugin ---

[INFO] Building: skinny-wars-filenamemapping-full/pom.xml

[INFO] run post-build script verify.bsh

[INFO] skinny-wars-filenamemapping-full/pom.xml SUCCESS (4.1 s)
[INFO] Building: jboss/pom.xml

[INFO] run post-build script verify.bsh

[INFO] JDOSS/POM. XML .\t i e SUCCESS (1.6 s)
[INFO] Building: skinny-wars/pom.xml

[INFO] run post-build script verify.bsh

[INFO] skinny-wars/pom.Xmloiireiiiiii i SUCCESS (2.3 s)
[INFO] Building: transitive-excludes/pom.xml

[INFO] run post-build script verify.bsh

[INFO] transitive-excludes/pom.Xmlccvvvvvnnnnnnnn. SUCCESS (1.6 s)
[INFO] Building: MEAR-198/pom.xml

[INFO] run post-build script verify.bsh

[INFO] MEAR-198/POM. XML . 'vsesseianssseennnnnnsseennnns SUCCESS (1.7 s)
[INFO] Building: non-skinny-wars/pom.xml

[INFO] run post-build script verify.bsh

[INFO] non-skinny-wars/pom.Xmlveuirernnrrnnnnsnnnns SUCCESS (2.3 s)
[INFO] Building: filenamemapping-usage-fail/pom.xml

[INFO] run post-build script verify.groovy

[INFO] filenamemapping-usage-fail/pom.xml SUCCESS (2.5 s)
[INFO] Building: MEAR-243-skinny-wars-provided/pom.xml

[INFO] run post-build script verify.bsh

[INFO] MEAR-243-skinny-wars-provided/pom.xml SUCCESS (2.3 s)
[INFO] Building: basic/pom.xml

[INFO] run post-build script verify.bsh

[INFO] basic/pom.XmL ...t i SUCCESS (1.7 s)
[INFO] Building: packaging-includes/pom.xml

[INFO] run post-build script verify.bsh

[INFO] packaging-includes/pom.XmLvvirinrrnnnnrnnnns SUCCESS (1.7 s)
[INFO] Building: resource-custom-directory/pom.xml

[INFO] run post-build script verify.bsh

[INFO] resource-custom-directory/pom.xmlc.cuuunn. SUCCESS (1.6 s)
[INFO] Building: skinny-wars-javaee5/pom.xml

[INFO] run post-build script verify.bsh

18

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

[INFO]

skinny-wars-javaee5/pom.xml ..., SUCCESS (2.9 s)
Building: skinny-wars-filenamemapping-no-version/pom.xml
run post-build script verify.bsh
skinny-wars-filenamemapping-no-version/pom.xml ... SUCCESS (2.3 s)
Building: same-artifactId/pom.xml
run post-build script verify.groovy
same-artifactId/pom.xmlccovviiiiiiiininnnn, SUCCESS (3.4 s)
Building: packaging-excludes/pom.xml
run post-build script verify.bsh
packaging-excludes/pom.xmlc.coiiiiiiiiinnnnn. SUCCESS (1.7 s)
Building: descriptor-encoding/pom.xml
run post-build script verify.groovy
descriptor-encoding/pom.Xmlvveviinnnnninann SUCCESS (2.0 s)

--- maven-failsafe-plugin:2.22.1:integration-test (default) @ maven-ear-plugin
Tests are skipped.
--- maven-checkstyle-plugin:3.0.0:check (checkstyle-check) @ maven-ear-plugin

There are 3 errors reported by Checkstyle 6.18 with config/maven_checks.xml

ruleset.

[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]
[INFO]

Ignored 3 errors, @ violation remaining.

--- maven-invoker-plugin:3.2.1:verify (integration-test) @ maven-ear-plugin ---

Build Summary:
Passed: 16, Failed: @, Errors: @, Skipped: @

--- maven-failsafe-plugin:2.22.1:verify (default) @ maven-ear-plugin ---
Tests are skipped.

Total time: 44.882 s
Finished at: 2019-12-03T18:48:53+01:00

	Integration Testing Framework Background Guide
	Table of Contents
	1. Overview of the Current Situation
	1.1. Maven Invoker Plugin
	1.2. Maven Verifier Plugin
	1.3. Maven Verifier Component
	1.4. Maven Plugin Testing Harness
	1.5. Mock Repository Manager
	1.6. Why not Spock?
	1.7. Conclusion

	2. Basic Idea
	3. Concept
	4. Example
	5. Execution of Maven itself
	6. Parameter Injection
	6.1. MavenExecutionResult
	6.2. Run Conditionally Integration Tests

	7. Assertions in Maven Tests
	7.1. Target Directory Handling
	7.2. New Ideas
	7.3. Things which do not work yet (not complete!)

	8. TODO List
	8.1. Support for running with several Maven Versions

	9. Comparison

